Acta Photonica Sinica, Volume. 51, Issue 10, 1006001(2022)

Research on Fiber-optic Ultrasonic Imaging of Seismic Physical Models(Invited)

Zhihua SHAO1,2, Huanhuan YIN1,2, Ruohui WANG1,2, and Xueguang QIAO1,2、*
Author Affiliations
  • 1School of Physics,Northwest University,Xi'an 710127,China
  • 2Engineering Research Center of Optical Fiber Well Logging Technology for Oil and Gas Resources,Universities of Shaanxi Province,Northwest University,Xi'an 710127,China
  • show less
    References(118)

    [1] OR S W, CHAN H L W, LO V C et al. Ultrasonic wire-bond quality monitoring using piezoelectric sensor[J]. Sensors and Actuators A: Physical, 65, 69-75(1998).

    [2] LI Shanggong, HONG Xiaodong, LI Yongchuan. Study on performance of two-dimensional array ultrasonic transducer based on piezoelectric composite[J]. Transducer and Microsystem Technologies, 41, 28-31(2022).

    [3] WANG H, YU Y, CHEN Z et al. Design and fabrication of a piezoelectric micromachined ultrasonic transducer array based on ceramic PZT[C], 17, 1381(2017).

    [4] LU Danhong, Lin Qiuxiang, XU Jianqiao et al. Linear ultrasonic motor based on longitudinal-bending coupled modal standing wave excited by the shear vibration mode of PZT ceramics[J]. Journal of Vibration and Shock, 40, 121-127+187(2021).

    [5] JUNG J, ANNAPUREDDY V, HWANG G T et al. 31-mode piezoelectric micromachined ultrasonic transducer with PZT thick film by granule spraying in vacuum process[J]. Applied Physics Letters, 110, 212903(2017).

    [6] GUGGENHEIM J A, LI J, ALLEN T J et al. Ultrasensitive plano-concave optical microresonators for ultrasound sensing[J]. Nature Photonics, 11, 714-719(2017).

    [7] LU C, LU S, ZHONG C et al. High-sensitivity low-frequency Fabry-Perot ultrasonic hydrophone with Chitosan diaphragm[J]. IEEE Sensors Journal, 22, 6669-6676(2022).

    [8] FAN H, MA W, CHEN L et al. Ultracompact twisted silica taper for 20 kHz to 94 MHz ultrasound sensing[J]. Optics Letters, 45, 3889-3892(2020).

    [9] LI Y, ZHOU C, TIAN J et al. An all-fiber multi-channel ultrasonic sensor using a switchable fiber Bragg gratings filter in erbium-doped fiber laser[J]. Journal of Lightwave Technology, 37, 4330-4339(2019).

    [10] HAZAN Y, ROSENTHAL A. Simultaneous multi-channel ultrasound detection via phase modulated pulse interferometry[J]. Optics Express, 27, 28844-28854(2019).

    [11] LIU G, HAN M. Multiplexing fiber-optic ultrasound sensors using laser intensity modulation[J]. Optics Letters, 44, 751-754(2019).

    [12] MIAO S, ZHANG W, HUANG W et al. High-resolution static strain sensor based on random fiber laser and beat frequency interrogation[J]. IEEE Photonics Technology Letters, 31, 1530-1533(2019).

    [13] LI J, XU J, LIU X et al. A novel CNTs array-PDMS composite with anisotropic thermal conductivity for optoacoustic transducer applications[J]. Composites Part B: Engineering, 196, 108073(2020).

    [14] ZHANG K, LI S, ZHOU Z. Detection of disbonds in multi-layer bonded structures using the laser ultrasonic pulse-echo mode[J]. Ultrasonics, 94, 411-418(2019).

    [15] ZENG Y, WANG X, QIN X et al. Laser Ultrasonic inspection of a Wire+Arc Additive Manufactured (WAAM) sample with artificial defects[J]. Ultrasonics, 110, 106273(2021).

    [16] GE Jin, CHENG Xiaojin, SHANG Jianhua. Study of defect detection mechanism of carbon fiber reinforced polymer based on laser thermoelastic effect[J]. Journal of Optoelectronics·Laser, 33, 83-90(2022).

    [17] GAO Feng, ZHOU Hong, HUANG Chao. Tests for crack diffraction enhancement based on phased array laser ultrasound[J]. Journal of Vibration and Shock, 41, 37-44+72(2022).

    [18] ZOU X, WU N, TIAN Y et al. Broadband miniature fiber optic ultrasound generator[J]. Optics Express, 22, 18119-18127(2014).

    [19] TIAN Y, WU N, ZOU X et al. Fiber-optic ultrasound generator using periodic gold nanopores fabricated by a focused ion beam[J]. Optical Engineering, 52, 065005(2013).

    [20] ZHUANG Wei. Development of high concentration glutathione intelligent response hybrid gold nanoparticles in tum or microenvironment for PAI/PPTT of tumors[D](2021).

    [21] CHEN Y S, FREY Y, KIM S et al. Silica-coated gold nanorods as photoacoustic signal nanoamplifiers[J]. Nano Letters, 11, 348-354(2011).

    [22] BAAC H W, OK J G, MAXWELL A et al. Carbon-nanotube optoacoustic lens for focused ultrasound generation and high-precision targeted therapy[J]. Scientific Reports, 2, 1-8(2012).

    [23] BAAC H W, OK J G, LEE T et al. Nano-structural characteristics of carbon nanotube-polymer composite films for high-amplitude optoacoustic generation[J]. Nanoscale, 7, 14460-14468(2015).

    [24] WU Ranran, XIA Hui, ZHANG Jingjing et al. Photoacoustic properties of carbon nanotubes-polydimethylsiloxane[J]. Spectroscopy and Spectral Analysis, 40, 2079-2086(2020).

    [25] OSER P, JEHN J, KAISER M et al. Fiber‐optic photoacoustic generator realized by inkjet‐printing of CNT‐PDMS composites on fiber end faces[J]. Macromolecular Materials and Engineering, 306, 2000563(2021).

    [26] BIAGI E, MARGHERI F, MENICHELLI D. Efficient laser-ultrasound generation by using heavily absorbing films as targets[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 48, 1669-1680(2001).

    [27] LEE S H, LEE Y, YOH J J. Reduced graphene oxide coated polydimethylsiloxane film as an optoacoustic transmitter for high pressure and high frequency ultrasound generation[J]. Applied Physics Letters, 106, 081911(2015).

    [28] CHANG W Y, HUANG W, KIM J et al. Candle soot nanoparticles-polydimethylsiloxane composites for laser ultrasound transducers[J]. Applied Physics Letters, 107, 161903(2015).

    [29] CHEN Zikang. Near-infrared absorbing organic small molecule nanoparticles for photoacoustic imaging and photothermal therapy[D](2020).

    [30] MA Y, XU L, YIN B et al. Ratiometric semiconducting polymer nanoparticle for reliable photoacoustic imaging of pneumonia-induced vulnerable atherosclerotic plaque in vivo[J]. Nano Letters, 21, 4484-4493(2021).

    [31] POUET B, RMOLOFOSAON P N[M]. Seismic physical modeling using laser ultrasonics, 841-844(1990).

    [32] SI Wenrong, LI Zechun, XIONG Chaoyu et al. Design and development of partial discharge positioning system based on MEMS-on-Fiber ultrasonic sensors[J]. Chinese Journal of Sensors and Actuators, 33, 1522-1528(2020).

    [33] ZHAO Yaming. Research on cantilever based fiber-optic ultrasonic sensor[D](2020).

    [34] ZHANG Jie, ZHAO Chunliang, ZENG Deping et al. Fabry-Perot interferometric fiber-optic ultrasonic hydrophone based on parylene film[J]. Piezoelectrics & Acoustooptics, 34, 355-358(2012).

    [35] TAKEDA N. Fiber optic sensor-based SHM technologies for aerospace applications in Japan[J]. In Smart Sensor Phenomena, Technology, Networks, and Systems, 6933, 15-27(2008).

    [36] HAO Xiaozhu, ZHANG Hanquan, WEI Chenglong et al. Sea trial for fiber-optic hydrophone array used in marine geophysical exploration[J]. Journal of Tropical Oceanography, 37, 93-98(2018).

    [37] SHAN Ning. Extremum experimental study of defect echo base on non-contact optical fiber F-P Laser[J]. Laser Journal, 31, 33-34(2010).

    [38] BUCARO J A, DARDY H D, CAROME E F. Optical fiber acoustic sensor[J]. Applied Optics, 16, 1761-1762(1977).

    [39] LI L, XIA L, XIE Z et al. All-fiber Mach-Zehnder interferometers for sensing applications[J]. Optics Express, 20, 11109-11120(2012).

    [40] HUA P, LUFF B J, QUIGLEY G R et al. Integrated optical dual Mach-Zehnder interferometer sensor[J]. Sensors and Actuators B: Chemical, 87, 250-257(2002).

    [41] LI B, JIANG L, WANG S et al. Ultra-abrupt tapered fiber Mach-Zehnder interferometer sensors[J]. Sensors, 11, 5729-5739(2011).

    [42] WANG X, CHEN D, LI H et al. In-line Mach-Zehnder interferometric sensor based on a seven-core optical fiber[J]. IEEE Sensors Journal, 17, 100-104(2016).

    [43] TIAN Z, YAM S. In-line abrupt taper optical fiber Mach-Zehnder interferometric strain sensor[J]. IEEE Photonics Technology Letters, 21, 161-163(2008).

    [44] GALLEGO D, LAMELA H. High-sensitivity ultrasound interferometric single-mode polymer optical fiber sensors for biomedical applications[J]. Optics Letters, 34, 1807-1809(2009).

    [45] LAN C, ZHOU W, XIE Y. Detection of ultrasonic stress waves in structures using 3D shaped optic fiber based on a Mach-Zehnder interferometer[J]. Sensors, 18, 1218(2018).

    [46] OUYANG B, LI Y, KRUIDHOF M et al. On-chip silicon Mach-Zehnder interferometer sensor for ultrasound detection[J]. Optics Letters, 44, 1928-1931(2019).

    [47] LIU Y, PENG W, LIANG Y et al. Fiber-optic Mach-Zehnder interferometric sensor for high-sensitivity high temperature measurement[J]. Optics Communications, 300, 194-198(2013).

    [48] FU H, LI H, SHAO M et al. TCF-MMF-TCF fiber structure based interferometer for refractive index sensing[J]. Optics and Lasers in Engineering, 69, 58-61(2015).

    [49] LOKMAN A, AROF H, HARUN S W et al. Optical fiber relative humidity sensor based on inline Mach-Zehnder interferometer with ZnO nanowires coating[J]. IEEE Sensors Journal, 16, 312-316(2015).

    [50] FAN X, WANG Q, ZHOU M et al. Humidity sensor based on a graphene oxide-coated few-mode fiber Mach-Zehnder interferometer[J]. Optics Express, 28, 24682-24692(2020).

    [51] LIU S, MENG H, DENG S et al. Fiber humidity sensor based on a graphene-coated core-offset Mach-Zehnder interferometer[J]. IEEE Sensors Letters, 2, 1-4(2018).

    [52] ATHERTON K, DONG F, PIERCE S G et al. Mach-Zehnder optical fiber interferometers for the detection of ultrasound[C](2000).

    [53] ZHOU Hongyang, MA Guoming, ZHANG Meng et al. Partial discharge ultrasonic signal detection technology in power transformer based on the michelson optical fiber interferometer[J]. Proceedings of the CESS, 6452-6459(2022).

    [54] ZHOU Wen. The high-temperature sensing characteristics of fiber Michelson interferometer and fiber cantilever beam[D](2016).

    [55] LIU L, LU P, LIAO H et al. Fiber-optic Michelson interferometric acoustic sensor based on a PP/PET diaphragm[J]. IEEE Sensors Journal, 16, 3054-3058(2016).

    [56] GANG T, HU M, QIAO X et al. Fiber-optic Michelson interferometer fixed in a tilted tube for direction-dependent ultrasonic detection[J]. Optics and Lasers in Engineering, 88, 60-64(2017).

    [57] FAN P, YAN W, LU P et al. High sensitivity fiber-optic Michelson interferometric low-frequency acoustic sensor based on a gold diaphragm[J]. Optics Express, 28, 25238-25249(2020).

    [58] FOMITCHOV P A, KRISHNASWAMY S, ACHENBACH J D. Compact phase-shifted Sagnac interferometer for ultrasound detection[J]. Optics & Laser Technology, 29, 333-338(1997).

    [59] MARKOWSKI K, TURKIEWICZ J, OSUCH T. Optical microphone based on Sagnac interferometer with polarization maintaining optical fibers[J]. Proceedings of SPIE, 8903, 89030Q(2013).

    [60] MA J, YU Y Q, JIN W. Demodulation of diaphragm based acoustic sensor using Sagnac interferometer with stable phase bias[J]. Optics Express, 23, 29268-29278(2015).

    [61] ZHAO W, WANG F, WANG J et al. A Sagnac-based interferometer with optimal polarization control for Lamb wave detection[J]. Optics & Laser Technology, 143, 107325(2021).

    [62] LI Zhigang. Research on all fiber Fabry Perot interferometric strain and ultrasonic sensor[D](2019).

    [63] SHAN Ning, ZHAO Yan. Design and experimental study of optical fiber F-P ultrasonic sensor[J]. Sensors and Microsystems, 29, 72-75(2010).

    [64] MA Guoming, ZHOU Hongyang, LIU Yunpeng et al. Optical fiber ultrasonic detection technology and new multiplexing method for transformer partial discharge[J]. High Voltage Technology, 46, 768-1780(2020).

    [65] GAO Chaofei, SONG Shu, TONG Zhongyu et al. Localization of partial discharge in oil based on EFPI optical fiber ultrasonic sensor[J]. High Voltage Apparatus, 55, 90-95+101(2019).

    [66] LAI Bowen. Research on diaphragm EFPI fiber optic acoustic sensor and sensing system[D](2017).

    [67] ZHANG Wenlu. Research on seismic physical model imaging technology of diaphragm fiber Fabry Perot interferometric ultrasonic sensor[D](2018).

    [68] ZHENG Qing. Research on ultrasonic detection method of transformer partial discharge based on optical fiber sensing[D](2016).

    [69] WEI H, KRISHNASWAMY S. A daptive fiber-ring lasers based on an optical fiber Fabry-Perot cavity for high-frequency dynamic strain sensing[J]. Applied Optics, 59, 530-535(2020).

    [70] ZHANG W, LU P, NI W et al. Gold-diaphragm based Fabry-Perot ultrasonic sensor for partial discharge detection and localization[J]. IEEE Photonics Journal, 12, 1-12(2020).

    [71] WU Y, YU C, WU F et al. A highly sensitive fiber-optic microphone based on graphene oxide membrane[J]. Journal of Lightwave Technology, 35, 4344-4349(2017).

    [72] KILIC O, DIGONNET M, KINO G et al. External fibre Fabry-Perot acoustic sensor based on a photonic-crystal mirror[J]. Measurement Science and Technology, 18, 3049(2007).

    [73] ZHANG W, CHEN F, MA W et al. Ultrasonic imaging of seismic physical models using a fringe visibility enhanced fiber-optic Fabry-Perot interferometric sensor[J]. Optics Express, 26, 11025-11033(2018).

    [74] RONG Q Z, ZHOU R X, HAO Y X et al. Ultrasonic sensitivity-improved Fabry-Perot interferometer using acoustic focusing and its application for noncontact imaging[J]. IEEE Photonics Journal, 9, 1-11(2017).

    [75] XIANG Z, DAI W, RAO W et al. A gold diaphragm-based Fabry-Perot interferometer with a fiber-optic collimator for acoustic sensing[J]. IEEE Sensors Journal, 21, 17882-17888(2021).

    [76] NI W, LU P, FU X et al. Ultrathin graphene diaphragm-based extrinsic Fabry-Perot interferometer for ultra-wideband fiber optic acoustic sensing[J]. Optics Express, 26, 20758-20767(2018).

    [77] FU X, LU P, ZHANG J et al. Micromachined extrinsic Fabry-Pérot cavity for low-frequency acoustic wave sensing[J]. Optics Express, 27, 24300-24310(2019).

    [78] THATHACHARY S, HOWES JV, ASHKENAZI S. Polymer waveguides for improved sensitivity in fiber Fabry-Perot ultrasound detectors[J]. IEEE Sensors Journal, 21, 43-50(2020).

    [79] GUO J, YANG C. Highly stabilized phase-shifted fiber Bragg grating sensing system for ultrasonic detection[J]. IEEE Photonics Technology Letters, 27, 848-851(2015).

    [80] ZHANG Ping. Performance research and application of ultrasonic sensing system based on fiber grating[D](2021).

    [81] FU Qi. FBG ultrasonic detection mechanism and system realization based on fiber laser[D](2017).

    [82] LI Yuan. Research on multi-point fiber laser ultrasonic energy conversion and adaptive FBG ultrasonic detection[D](2021).

    [83] WEBB D J, SUROWIEC J, SWEENEY M et al. Miniature fiber optic ultrasonic probe[C], 2839, 76-80(1996).

    [84] ROSENTHAL A, RAZANSKY D, NTZIACHRISTOS V. High-sensitivity compact ultrasonic detector based on a pi-phase-shifted fiber Bragg grating[J]. Optics Letters, 36, 1833-1835(2011).

    [85] HU L, LIU G, ZHU Y et al. Laser frequency noise cancelation in a phase-shifted fiber Bragg grating ultrasonic sensor system using a reference grating channel[J]. IEEE Photonics Journal, 8, 1-8(2016).

    [86] LIU W F, LI J G, CHANG H Y et al. A new type of etched fiber grating hydrophone[C], 9, 255-259(2022).

    [87] LI C, PENG X, LIU J et al. D-shaped fiber Bragg grating ultrasonic hydrophone with enhanced sensitivity and bandwidth[J]. Journal of Lightwave Technology, 37, 2100-2108(2019).

    [88] WEI H, KRISHNASWAMY S. Direct laser writing of a phase-shifted Bragg grating waveguide for ultrasound detection[J]. Optics Letters, 44, 3817-3820(2019).

    [89] GUAN B O, TAM H Y, LAUS T, CHAN H L. Ultrasonic hydrophone based on distributed Bragg reflector fiber laser[J]. IEEE Photonics Technology Letters, 17, 169-171(2004).

    [90] LYUC, ZHANG S, FANG G et al. Performance of dual-frequency ultrasound measurement based on DBR fiber laser hydrophone[J]. Sensors and Actuators A: Physical, 266, 101-110(2017).

    [91] TANAK S, YOKOSUKA H, TAKAHASHI N. Temperature-independent fiber Bragg grating underwater acoustic sensor array using incoherent light[J]. Acoustical Science and Technology, 27, 50-52(2006).

    [92] TANAKA S, SOMATOMO H, INAMOTO K et al. Triple wavelength SOA-based fiber ring laser for use in wavelength-division multiplexed FBG vibration sensor array[C], 7004, 77-80(2008).

    [93] TANAKA S, INAMOTO K, YOKOSUKA H et al. Multi-wavelength tunable fiber laser using SOA: application to fiber Bragg grating vibration sensor array[J]. Sensors, 411-414(2007).

    [94] TANAKA S, YOKOSUKA H, INAMOTO K et al. Wavelength division multiplexed FBG vibration sensor array: application to analysis of elastic-waves in metal rod[C](2006).

    [95] CULSHAW B, THURSBY G, BETZ D et al. The detection of ultrasound using fiber-optic sensors[J]. IEEE Sensors Journal, 8, 1360-1367(2008).

    [96] LIU G, HAM M. Multiplexing fiber-optic ultrasound sensors using laser intensity modulation[J]. Optics Letters, 44, 751-754(2019).

    [97] WANG Lin. Research on new swept frequency laser light source for OCT imaging and biomedical sensing[D](2018).

    [98] SUN Qizhen, YANG Liuyang, XU Dongchen et al. Technology and application progress of optical fiber ultrasonic transducer[J]. Chinese Journal of Lasers, 49, 1210001(2022).

    [99] SHI Jingming, ZHENG Di, PAN Wei et al. Research on fiber grating ultrasonic sensor based on coupling cone structure and its nondestructive testing[J]. Acta Optica Sinica, 39, 53-58(2019).

    [100] WANG Yuanyuan, MA Hongwei, ZHANG Guangming et al. Research on ultrasonic nondestructive testing system based on Fiber Bragg grating[J]. Modern Electronic Technology, 45, 143-146(2022).

    [101] CHEN Xuefeng, YANG Zhibo, TIAN Shaohua et al. Damage identification and health monitoring of composite structures[J]. Vibration, Testing and Diagnosis, 38, 1-10(2018).

    [103] LI Ridong. Research on cable partial discharge detection method based on optical fiber sensing technology[D](2020).

    [104] WANG W, PU R, QIAO X et al. Seismic-physical modeling using a micro quasi-Michelson fiber-optic interferometer[J]. IEEE Sensors Journal, 19, 1807-1812(2018).

    [105] COOPER J K, LAWTON D C, MARGRAVE G F. The wedge model revisited: a physical modeling experiment[J]. Geophysics, 75, T15-T21(2010).

    [106] WONG J, HALL K W, GALLANT E V et al[M]. Seismic physical modeling at the University of Calgary, 2642-2646(2009).

    [107] KIM D, SHIN S, CHUNG W et al. Development of 3-axis precise positioning seismic physical modeling system for seismic imaging and data Processing[J]. Journal of the Korean Society of Mineral and Energy Resources Engineers, 24-34(2020).

    [108] DING P B, GONG F, ZHANG F et al. A physical model study of shale seismic responses and anisotropic inversion[J]. Petroleum Science, 18, 1059-1068(2021).

    [109] WANG Q, LU Q, LIANG W et al. Propagation characteristics of joint physical simulation of both electromagnetic wave and ultrasonic wave in fractured media model[C], 933-936(2012).

    [110] GUO J, XUE S, ZHAO Q et al. Ultrasonic imaging of seismic physical models using a phase-shifted fiber Bragg grating[J]. Optics Express, 22, 19573-19580(2014).

    [111] YANG X, SHAO Z, YIN H et al. Ultrasonic microfiber sensor based on tapered multi-core fiber[J]. Optics & Laser Technology, 151, 107987(2022).

    [112] SHAO Z, ZHOU K, YIN H et al. Advanced suspended-core fiber sensor for seismic physical modeling[J]. Optics Express, 30, 16384-16395(2022).

    [113] RONG Q, SHAO Z, YIN X et al. Ultrasonic imaging of seismic physical models using fiber Bragg grating Fabry-Perot probe[J]. IEEE Journal of Selected Topics in Quantum Electronics, 23, 223-228(2016).

    [114] YIN H, SHAO Z, CHEN F et al. Highly sensitive ultrasonic sensor based on polymer Bragg grating and its application for 3D imaging of seismic physical model[J]. Journal of Lightwave Technology, 40, 5294-5299(2022).

    [115] LIU X, WANG W, RONG Q et al. Highly sensitive photoacoustic imaging: a new strategy for ultrahigh spatial resolution seismic physical model imaging[J]. IEEE Photonics Journal, 12, 1-11(2020).

    [116] JIN K, LIU X, LI P et al. Improved laser-ultrasonic excitation for imaging of seismic physical modeling[J]. Applied Physics B, 127, 1-8(2021).

    [117] PENG Y, MA S, SHAO Z et al. Multifunctional SiO2/C/Fe3O4 composite particles with photoacoustic and magnetocaloric properties[J]. The Journal of Physical Chemistry C, 125, 22335-22345(2021).

    [118] XU L, SHAO Z, PENG Y et al. Laser ultrasonic excitation using graphene heat dissipation film for ultrasonic detection of seismic physical model[J]. Vibroengineering Procedia, 40, 89-95(2022).

    Tools

    Get Citation

    Copy Citation Text

    Zhihua SHAO, Huanhuan YIN, Ruohui WANG, Xueguang QIAO. Research on Fiber-optic Ultrasonic Imaging of Seismic Physical Models(Invited)[J]. Acta Photonica Sinica, 2022, 51(10): 1006001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Fiber Optics and Optical Communications

    Received: Jul. 1, 2022

    Accepted: Sep. 16, 2022

    Published Online: Nov. 30, 2022

    The Author Email: Xueguang QIAO (xgqiao@nwu.edu.cn)

    DOI:10.3788/gzxb20225110.1006001

    Topics