Laser & Optoelectronics Progress, Volume. 60, Issue 10, 1028008(2023)

Visual Simultaneous Localization and Mapping Algorithm Combining Mixed Attention Instance Segmentation

Haowei Jiang1, Mengyuan Chen1,2、*, and Xuechao Yuan3
Author Affiliations
  • 1College of Electrical Engineering, Anhui Polytechnic University, Wuhu 241000, Anhui, China
  • 2Key Laboratory of Advanced Perception and Intelligent Control of High-End Equipment, Wuhu 241000, Anhui, China
  • 3Wuhu Googol Automation Technology Co., Ltd., Wuhu 241000, Anhui, China
  • show less
    Figures & Tables(21)
    System framework diagram
    Framework diagram of mixed attention Mask-RCNN algorithm
    Proposed backbone network structure
    Spatial attention structure
    Channel attention structure
    Flow chart of mismatching remove
    Instance segmentation results in 02 and 07 sequences. (a)(c) Pre-improved algorithm; (b) (d) proposed algorithm
    Matching results in 00 sequence. (a) SURF feature matching results; (b) ORB feature matching results; (c) proposed algorithm feature matching results
    Operating trajectories in different sequences on KITTI. (a) 10 sequence; (b) 01 sequence; (c) 06 sequence; (d) 07 sequence; (e) 09 sequence; (f) 00 sequence
    Processing time per frame on three algorithms. (a) ORB-SLAM2; (b) DS-SLAM; (c) proposed algorithm
    TurtleBot3 Burger
    Real experimental environment scene. (a) Real scene; (b) layout plan
    Image of pentacle position for the first time. (a) Instance segmentation result of pre-improved algorithm; (b) instance segmentation result of proposed algorithm
    Image of pentacle position for the second time. (a) Instance segmentation result of pre-improved algorithm; (b) instance segmentation result of proposed algorithm
    Operating trajectory in real scene
    • Table 1. Main parameter of mixed attention backbone network

      View table

      Table 1. Main parameter of mixed attention backbone network

      NumberTypeAreaValue
      0Conv1_x-OutputResNet-50,Conv1_x(64,H/4,W/4)
      1Conv2_x-OutputResNet-50,Conv2_x(256,H/4,W/4)
      2Conv3_x-OutputResNet-50,Conv3_x(512,H/8,W/8)
      3Conv4_x-OutputResNet-50,Conv4_x(1024,H/16,W/16)
      4Conv5_x-OutputResNet-50,Conv5_x(2048,H/32,W/32)
      5Upsample strideFPN2
      6Convolution kernel sizeSpatial attention7×7
      7Activation functionSpatial attentionSigmoid
      8Activation functionChannel attetion-MLPReLU
      9Activation functionChannel attentionSigmoid
    • Table 2. Comparison of algorithm test results in AP

      View table

      Table 2. Comparison of algorithm test results in AP

      AlgorithmBackboneAP /%
      APAP50AP75APSAPMAPL
      Mask-RCNNResNet-50-FPN33.454.935.314.735.250.1
      Proposed algorithmResNet-50-MAM-FPN34.957.536.915.336.952.5
    • Table 3. Comparison of effective matching rate and matching time on KITTI

      View table

      Table 3. Comparison of effective matching rate and matching time on KITTI

      SequenceSURFORBProposed algorithm
      Matching pairs

      Effective matching

      pairs

      Effective matching

      rate /%

      Matching

      time /s

      Matching pairs

      Effective matching

      pairs

      Effective matching

      rate /%

      Matching

      time /s

      Matching pairs

      Effective matching

      pairs

      Effective matching

      rate /%

      Matching

      time /s

      001235100281.10.115651239577.10.008949439279.40.0115
      011254103082.10.117249038177.80.008448939681.00.0097
      061560126481.00.140560745775.30.009452442480.90.0122
      071438119683.20.128153040576.40.009050742684.00.0119
      091320108882.40.126150739076.90.008650141282.20.0102
      101480121081.80.136455242476.80.009251442482.50.0121
      Average1381113281.90.127353340976.70.008950541281.70.0113
      Variance1437694760.570.083×10-345686480.580.115×10-61401902.10.937×10-6
    • Table 4. Comparison of operating results on KITTI

      View table

      Table 4. Comparison of operating results on KITTI

      SequenceORB-SLAM2DS-SLAMProposed algorithm

      Average

      distance

      Error /m

      Average

      angle

      Error /m

      Precision rate of loop detection /%

      Average

      distance

      Error /m

      Average

      angle

      Error /m

      Precision rate of loop detection /%

      Average

      distance

      Error /m

      Average

      angle

      Error /m

      Precision

      rate of loop detection /%

      103.151.552.620.942.010.82
      013.261.393.010.882.320.79
      062.991.5777.92.510.7982.32.380.7386.4
      073.051.302.720.612.530.50
      093.111.432.870.852.140.72
      003.641.2476.62.940.9780.42.540.8784.7
    • Table 5. Operation parameters setting

      View table

      Table 5. Operation parameters setting

      VariableParameterValue
      Running velocityVs0.15 m/s
      Rotating velocityVθ2.1 rad/s
      Range of directionalΘ[0,2π]

      Camera sampling

      frequency

      H30 frame/s
    • Table 6. Comparison of running results in real scene

      View table

      Table 6. Comparison of running results in real scene

      IndexRMSE /mTime /sPrecision rate of loop detection /%
      Proposed algorithm0.5227085.3
    Tools

    Get Citation

    Copy Citation Text

    Haowei Jiang, Mengyuan Chen, Xuechao Yuan. Visual Simultaneous Localization and Mapping Algorithm Combining Mixed Attention Instance Segmentation[J]. Laser & Optoelectronics Progress, 2023, 60(10): 1028008

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Remote Sensing and Sensors

    Received: Dec. 17, 2021

    Accepted: Mar. 1, 2022

    Published Online: May. 23, 2023

    The Author Email: Mengyuan Chen (mychen@ahpu.edu.cn)

    DOI:10.3788/LOP213265

    Topics