Frontiers of Optoelectronics, Volume. 9, Issue 4, 633(2016)
Improved accuracy of superpixel segmentation by region merging method
[1] [1] Ren X, Malik J. Learning a classi.cation model for segmentation. In: Proceedings of IEEE International Conference on Computer Vision. 2003, 10–17
[2] [2] Kohli P, Ladicky L, Torr P H S. Robust higher order potentials for enforcing label consistency. International Journal of Computer Vision, 2009, 82(3): 302–324
[3] [3] Pantofaru C, Schmid C, Hebert M. Object recognition by integrating multiple image segmentations. In: Proceedings of European Conference on Computer Vision. 2008, 5304: 481–494
[4] [4] Fulkerson B, Vedaldi A, Soatto S. Class segmentation and object localization with superpixel neighborhoods. In: Proceedings of IEEE International Conference on Computer Vision. 2009, 670–677
[5] [5] Achanta R, Shaji A, Smith K, Lucchi A, Fua P, Süsstrunk S. SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11): 2274–2282
[6] [6] Levinshtein A, Stere A, Kutulakos K N, Fleet D J, Dickinson S J, Siddiqi K. TurboPixels: fast superpixels using geometric .ows. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(12): 2290–2297
[7] [7] Veksler O, Boykov Y, Mehrani P. Superpixels and supervoxels in an energy optimization framework. In: Proceedings of European Conference on Computer Vision. 2010, 6315: 211–224
[8] [8] Liu M Y, Tuzel O, Ramalingam S, Chellappa R. Entropy-rate clustering: cluster analysis via maximizing a submodular function subject to a matroid constraint. IEEE Transactions on Pattern As f(x) is a convex/concave function, the derivative Analysis and Machine Intelligence, 2014, 36(1): 99–112 .f exT=.x is monotonically increasing/decreasing, there is 9. Haris K, Efstratiadis S N, Maglaveras N, Katsaggelos A K. Hybrid image segmentation using watersheds and fast region merging. IEEE Transactions on Image Processing, 1998, 7(12): 1684–1699
[9] [9] Salembier P, Garrido L. Binary partition tree as an ef.cient representation for image processing, segmentation, and information retrieval. IEEE Transactions on Image Processing, 2000, 9(4): 561– 576
[10] [10] Nock R, Nielsen F. Statistical region merging. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(11): 1452– 1458
[11] [11] Calderero F, Marques F. Region merging techniques using information theory statistical measures. IEEE Transactions on Image Processing, 2010, 19(6): 1567–1586
[12] [12] Moscheni F, Bhattacharjee S, Kunt M. Spatio-temporal segmenta-tion based on region merging. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(9): 897–915
[13] [13] Ben Ayed I, Mitiche A. A region merging prior for variational level set image segmentation. IEEE Transactions on Image Processing, 2008, 17(12): 2301–2311
[14] [14] Beaulieu J M, Goldberg M. Hierarchy in picture segmentation: a stepwise optimization approach. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989, 11(2): 150–163
[15] [15] Wikipedia. Diversity index, 2014, http://en.wikipedia.org/wiki/ Diversity_index
[16] [16] Cormen T H, Leiserson C E. Rivest R L, Stein C. Introduction to Algorithms. 2nd ed. Cambridge, Mass: MIT Press, 2001
Get Citation
Copy Citation Text
Song ZHU, Danhua CAO, Yubin WU, Shixiong JIANG. Improved accuracy of superpixel segmentation by region merging method[J]. Frontiers of Optoelectronics, 2016, 9(4): 633
Category: RESEARCH ARTICLE
Received: Oct. 14, 2014
Accepted: Jan. 16, 2015
Published Online: Mar. 9, 2017
The Author Email: Danhua CAO (dhcao@mail.hust.edu.cn)