NUCLEAR TECHNIQUES, Volume. 46, Issue 2, 020101(2023)

Development of a portable laser heating device for synchrotron radiation in situ experiment

Haitao LI1,2,3, Bo ZHAO2、***, Xiangzhi ZHANG1,3,4、**, Zhi GUO1,3,4, Yong WANG1,3,4, Daming ZHU1,3,4, Zeying YAO3,4, Chenhui CUI2,3,4, Yuchen JIAO3,4, Haigang LIU1, Zijian XU1,3,4, Limei MA1, and Renzhong TAI1,2,3,4、*
Author Affiliations
  • 1Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
  • 2ShanghaiTech University, Shanghai 201210, China
  • 3Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
  • 4University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    References(24)

    [1] WEI Xu, ZHANG Bingbing, SUN Darui et al. Ultrafast X-ray diffraction development at high repetition rate in Beijing Synchrotron Radiation Facility[J]. Nuclear Techniques, 40, 100101(2017).

    [2] YUAN Qingxi, TIAN Yulian, ZHU Peiping et al. A new diffraction-enhanced imaging set-up for large sample using synchrotron radiation X-ray[J]. Nuclear Techniques, 27, 725-728(2004).

    [3] Ming L C, Bassett W A. Laser heating in the diamond anvil press up to 2 000 ℃ sustained and 3 000 ℃ pulsed at pressures up to 260 kilobars[J]. Review of Scientific Instruments, 45, 1115-1118(1974).

    [4] Shen G Y, Rivers M L, Wang Y B et al. Laser heated diamond cell system at the advanced photon source for in situ X-ray measurements at high pressure and temperature[J]. Review of Scientific Instruments, 72, 1273-1282(2001).

    [5] Saxena S K, Dubrovinsky L S, Häggkvist P et al. Synchrotron X-ray study of iron at high pressure and temperature[J]. Science, 269, 1703-1704(1995).

    [6] LIU Jing, XIAO Wansheng, LI Xiaodong et al. Laser-heated diamond anvil cell technique combined with synchrotron X-ray light source and its applications to Earth's interior material research[J]. Earth Science Frontiers, 12, 93-101(2005).

    [7] CUI Weiran, LI Xiaodong, GONG Yu et al. Research on pulsed laser heating method applied in high-pressure XRD measurement[J]. Nuclear Techniques, 43, 080101(2020).

    [8] Tateno S, Hirose K, Ohishi Y et al. The structure of iron in Earth's inner core[J]. Science, 330, 359-361(2010).

    [9] Shen G Y, Mao H K, Hemley R J et al. Melting and crystal structure of iron at high pressures and temperatures[J]. Geophysical Research Letters, 25, 373-376(1998).

    [10] Petitgirard S, Salamat A, Beck P et al. Strategies for in situ laser heating in the diamond anvil cell at an X-ray diffraction beamline[J]. Journal of Synchrotron Radiation, 21, 89-96(2014).

    [11] Watanuki T, Shimomura O, Yagi T et al. Construction of laser-heated diamond anvil cell system for in situ X-ray diffraction study at SPring-8[J]. Review of Scientific Instruments, 72, 1289-1292(2001).

    [12] Boehler R, Musshoff H G, Ditz R et al. Portable laser-heating stand for synchrotron applications[J]. The Review of Scientific Instruments, 80, 045103(2009).

    [13] Boccato S, Torchio R, D'Angelo P et al. Compression of liquid Ni and Co under extreme conditions explored by X-ray absorption spectroscopy[J]. Physical Review B, 100, 180101(2019).

    [14] Sakamaki T, Ohtani E, Fukui H et al. Constraints on Earth's inner core composition inferred from measurements of the sound velocity of hcp-iron in extreme conditions[J]. Science Advances, 2, e1500802(2016).

    [15] Kawaguchi S I, Nakajima Y, Hirose K et al. Sound velocity of liquid Fe-Ni-S at high pressure[J]. Journal of Geophysical Research: Solid Earth, 122, 3624-3634(2017).

    [16] Thompson S, Komabayashi T, Breton H et al. Compression experiments to 126 GPa and 2 500 K and thermal equation of state of Fe3S: implications for sulphur in the Earth's core[J]. Earth and Planetary Science Letters, 534, 116080(2020).

    [17] Anzellini S, Monteseguro V, Bandiello E et al. In situ characterization of the high pressure–high temperature melting curve of platinum[J]. Scientific Reports, 9, 13034(2019).

    [18] Komabayashi T, Pesce G, Morard G et al. Phase transition boundary between fcc and hcp structures in Fe-Si alloy and its implications for terrestrial planetary cores[J]. American Mineralogist, 104, 94-99(2019).

    [19] Dickinson R G, Pauling L. The crystal structure of molybdenite[J]. Journal of the American Chemical Society, 45, 1466-1471(1923).

    [20] Lopez-Sanchez O, Lembke D, Kayci M et al. Ultrasensitive photodetectors based on monolayer MoS2[J]. Nature Nanotechnology, 8, 497-501(2013).

    [21] Lee C G, Yan H G, Brus L E et al. Anomalous lattice vibrations of single- and few-layer MoS2[J]. ACS Nano, 4, 2695-2700(2010).

    [22] Acerce M, Voiry D, Chhowalla M. Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials[J]. Nature Nanotechnology, 10, 313-318(2015).

    [23] Zheng S Y, Han P, Han Z et al. Nano-copper-assisted immobilization of sulfur in high-surface-area mesoporous carbon cathodes for room temperature Na-S batteries[J]. Advanced Energy Materials, 4, 1400226(2014).

    [24] Geng X M, Zhang Y L, Han Y et al. Two-dimensional water-coupled metallic MoS2 with nanochannels for ultrafast supercapacitors[J]. Nano Letters, 17, 1825-1832(2017).

    Tools

    Get Citation

    Copy Citation Text

    Haitao LI, Bo ZHAO, Xiangzhi ZHANG, Zhi GUO, Yong WANG, Daming ZHU, Zeying YAO, Chenhui CUI, Yuchen JIAO, Haigang LIU, Zijian XU, Limei MA, Renzhong TAI. Development of a portable laser heating device for synchrotron radiation in situ experiment[J]. NUCLEAR TECHNIQUES, 2023, 46(2): 020101

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Aug. 10, 2022

    Accepted: --

    Published Online: Mar. 2, 2023

    The Author Email:

    DOI:10.11889/j.0253-3219.2023.hjs.46.020101

    Topics