Acta Photonica Sinica, Volume. 53, Issue 9, 0911001(2024)
Digital Holography and Quantitative Phase Imaging: Advances and Prospects (Invtied)
[1] GABOR D. A new microscopic principle[J]. Nature, 161, 777-778(1948).
[2] GOODMAN J W[M]. Introduction to fourier optics(2017).
[3] DIASPRO A[M]. Optical Fluorescence Microscopy(2011).
[4] ZERNIKE F. Phase contrast, a new method for the microscopic observation of transparent objects[J]. Physica, 9, 686-698(1942).
[5] LEITH E N, UPATNIEKS J. Reconstructed wavefronts and communication theory[J]. Journal of the Optical Society of America, 52, 1123-1130(1962).
[6] GOODMAN J W, LAWRENCE R W. Digital image formation from electronically detected holograms[J]. Applied Physics Letters, 11, 77-79(1967).
[7] SCHNARS U, JÜPTNER W. Direct recording of holograms by a CCD target and numerical reconstruction[J]. Applied Optics, 33, 179-181(1994).
[8] CUCHE E, BEVILACQUA F, DEPEURSINGE C. Digital holography for quantitative phase-contrast imaging[J]. Optics Letters, 24, 291-293(1999).
[9] POON T C[M]. Digital holography and tree-dimensional display: principles and applications(2006).
[10] BOAS D A, PITRIS C, RAMANUJAM N[J]. Handbook of biomedical optics(2016).
[11] MALACARA D[M]. Optical shop testing(2007).
[12] BRUNING J H, HERRIOTT D R, GALLAGHER J et al. Digital wavefront measuring interferometer for testing optical surfaces and lenses[J]. Applied Optics, 13, 2693-2703(1974).
[13] TAKEDA M, INA H, KOBAYASHI S. Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry[J]. Journal of the Optical Society of America, 72, 156-160(1982).
[14] SHAKED N, MICÓ V, TRUSIAK M et al. Off-axis digital holographic multiplexing for rapid wavefront acquisition and processing[J]. Advanced in Optics and Photonics, 12, 556-611(2020).
[15] WU Yichen, OZCAN A. Lensless digital holographic microscopy and its applications in biomedicine and environmental monitoring[J]. Methods, 136, 4-16(2018).
[16] WANG Fei, BIAN Yaoming, WANG Haichao et al. Phase imaging with an untrained neural network[J]. Light: Science & Applications, 9, 77(2020).
[17] RAHMAN M S S, OZCAN A. Computer-free, all-optical reconstruction of holograms usingdiffractive networks[J]. ACS Photonics, 8, 3375-3384(2021).
[18] MENGU D, OZCAN A. All-optical phase recovery: diffractive computing for quantitative phase imaging[J]. Advanced Optical Materials, 10, 2200281(2022).
[19] WOLF E. Three-dimensional structure determination of semitransparent objects from holographic data[J]. Optics Communications, 1, 153-156(1969).
[20] LEITH E N, UPATNIEKS J. Wavefront reconstruction with diffused illumination and 3-dimensional objects[J]. Journal of the Optical Society of America, 54, 1295-1301(1964).
[21] LEITH E N, UPATNIEKS J. Wavefront reconstruction with continuous-tone objects[J]. Journal of the Optical Society of America, 53, 1377-1381(1963).
[22] MILGRAM J, LI W C. Computational reconstruction of images from holograms[J]. Applied Optics, 41, 853-864(2002).
[23] POPESCU G, IKEDA T, DASARI R R et al. Difraction phase microscopy for quantifying cell structure and dynamics[J]. Optics Letters, 31, 775-777(2006).
[24] BRADY D J, CHOI K, MARKS D L et al. Compressive holography[J]. Optics Express, 17, 13040-13049(2009).
[25] BAEK Y S, PARK Y K. Intensity-based holographic imaging via space-domain Kramers–Kronig relations[J]. Nature Photonics, 15, 354-360(2021).
[26] RADON J. On the determination of functions from their integral values along certain manifolds[J]. IEEE Transactions on Medical Imaging, 5, 170-176(1986).
[27] PETER C, WOLFGANG L, DIRK VAN D et al. Quantitative phase tomography by holographic reconstruction[C], 363731(1999).
[28] CHARRIERE F, PAVILLON N, COLOMB T et al. Living specimen tomography by digital holographic microscopy: morphometry of testate amoeba[J]. Optics Express, 14, 7005-7013(2006).
[29] COTTE Y, TOY F, JOURDAIN P et al. Marker-free phase nanoscopy[J]. Nature Photonics, 7, 113-117(2013).
[30] HORSTMEYER R, CHUNG J, Xiaoze OU et al. Diffraction tomography with Fourier ptychography[J]. Optica, 3, 827-835(2016).
[31] MEROLA F, MEMMOLO P, MICCIO L et al. Tomographic flow cytometry by digital holography[J]. Light: Science & Applications, 6, e16241(2017).
[32] HU Chenfei, FIELD J J, KELKAR V et al. Harmonic optical tomography of nonlinear structures[J]. Nature Photonics, 14, 564-569(2020).
[33] LI Jiaji, ZHOU Ning, SUN Jiasong et al. Transport of intensity diffraction tomography with non-interferometric synthetic aperture for three-dimensional label-free microscopy[J]. Light: Science & Applications, 11, 154(2022).
[34] HUANG Zhengzhong, CAO Liangcai. k-space holographic multiplexing for synthetic aperture diffraction tomography[J]. APL Photonics, 9, 056101(2024).
[35] HEGERL R, HOPPE W. Dynamische theorie der kristallstrukturanalyse durch elektronenbeugung im inhomogenen primärstrahlwellenfeld[J]. Berichte der Bunsengesellschaft Für Physikalische Chemie, 74, 1148-1154(1970).
[36] GERCHBERG R W, SAXTON W O. A practical algorithm for the determination of phase from image and diffraction plane pictures[J]. Optik, 35, 237-250(1972).
[37] FIENUP J R. Phase retrieval algorithms: a comparison[J]. Applied Optics, 21, 2758-2769(1982).
[38] STREIBL N. Phase imaging by the transport equation of intensity[J]. Optics Communications, 49, 6-10(1984).
[39] YANG Guozhen, DONG Bizhen, GU Benyuan et al. Gerchberg-Saxton and Yang-Gu algorithms for phase retrieval in a nonunitary transform system: a comparison[J]. Applied Optics, 33, 209-218(1994).
[40] BISHARA W, SU T W, COSKUN A F et al. Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution[J]. Optics Express, 18, 11181-11191(2010).
[41] GREENBAUM A, LUO Wei, SU T W et al. Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy[J]. Nature Methods, 9, 889-895(2012).
[42] RIVENSON Y, ZHANG Yibo, GÜNAYDIN H et al. Phase recovery and holographic image reconstruction using deep learning in neural networks[J]. Light: Science & Applications, 7, 17141(2018).
[43] SINHA A, LEE J, LI Shuai et al. Lensless computational imaging through deep learning[J]. Optica, 4, 1117-1125(2017).
[44] UEDA M, SATO T, KONDO M. Superresolution by multiple superposition of image holograms having different carrier frequencies[J]. Optica Acta: International Journal of Optics, 20, 403-410(1973).
[45] BEGHUIN D, CUCHE E, DAHLGREN P et al. Single acquisition polarisation imaging with digital holography[J]. Electronics Letters, 35, 2053-2055(1999).
[46] SCHEDIN S, PEDRINI G, TIZIANI H J et al. Simultaneous three-dimensional dynamic deformation measurements with pulsed digital holography[J]. Applied Optics, 38, 7056-7062(1999).
[47] MAURER C, KHAN S, FASSL S et al. Depth of field multiplexing in microscopy[J]. Optics Express, 18, 3023-3034(2010).
[48] MIN Junwei, YAO Baoli, GAO Peng et al. Dual-wavelength slightly off-axis digital holographic microscopy[J]. Applied Optics, 51, 191-196(2012).
[49] GIRSHOVITZ P, SHAKED N. Doubling the field of view in off-axis low-coherence interferometric imaging[J]. Light: Science & Applications, 3, e151(2014).
[50] CHOWDHURY S, ELDRIDGE W J, WAX A et al. Spatial frequency domain multiplexed microscopy for simultaneous, single-camera, one-shot, fluorescent, and quantitative-phase imaging[J]. Optics Letters, 40, 4839-4842(2015).
[51] HOSSEINI P, SUNG Y, CHOI Y et al. Scanning Color Optical Tomography (SCOT)[J]. Optics Express, 23, 19752-19762(2015).
[52] RUBIN M, DARDIKMAN G, MIRSKY S K et al. Six-pack off-axis holography[J]. Optics Letters, 42, 4611-4614(2017).
[53] DARDIKMAN G, TURKO N A, NATIV N et al. Optimal spatial bandwidth capacity in multiplexed off-axis holography for rapid quantitative phase reconstruction and visualization[J]. Optics Express, 25, 33400-33415(2017).
[54] HUANG Zhengzhong, CAO Liangcai. High bandwidth utilization digital holographic multiplexing: an approach using Kramers-Kronig relations[J]. Advanced Photonics Research, 3, 2100273(2022).
[55] YAMAGUCHI I, ZHANG Tong. Phase-shifting digital holography[J]. Optics Letters, 22, 1268-1270(1997).
[56] AWATSUJI Y, SASADA M, KUBOTA T. Parallel quasi-phase-shifting digital holography[J]. Applied Physics Letters, 85, 1069-1071(2004).
[57] AWATSUJI Y, FUJII A, KUBOTA T et al. Parallel three-step phase-shifting digital holography[J]. Applied Optics, 45, 2995-3002(2006).
[58] AWATSUJI Y, TAHARA T, KANEKO A et al. Parallel two-step phase-shifting digital holography[J]. Applied Optics, 47, D183-D189(2008).
[59] WANG Zhuo, MILLET L, MIR M et al. Spatial Light Interference Microscopy (SLIM)[J]. Optics Express, 19, 1016-1026(2011).
[60] NGUYEN T H, KANDEL M E, RUBESSA M et al. Gradient light interference microscopy for 3D imaging of unlabeled specimens[J]. Nature Communications, 8, 210(2017).
[61] PARK Y K, POPESCU G, BADIZADEGAN K et al. Diffraction phase and fluorescence microscopy[J]. Optics Express, 14, 8263-8268(2006).
[62] LUE N, CHOI W, POPESCU G et al. Live cell refractometry using hilbert phase microscopy and confocal reflectance microscopy[J]. Journal of Physical Chemistry A, 113, 13327-13330(2009).
[63] CHOWDHURY S, ELDRIDGE W J, WAX A et al. Structured illumination multimodal 3d-resolved quantitative phase and fluorescence sub-diffraction microscopy[J]. Biomedical Optics Express, 8, 2496-2518(2017).
[64] DESCLOUX A, GRUSSMAYER K S, BOSTAN E et al. Combined multi-plane phase retrieval and super-resolution optical fluctuation imaging for 4D cell microscopy[J]. Nature Photonics, 12, 165-172(2018).
[65] DONG Dashan, HUANG Xiaoshuai, LI Liuju et al. Super-resolution fluorescence-assisted diffraction computational tomography reveals the three-dimensional landscape of the cellular organelle interactome[J]. Light: Science & Applications, 9, 11(2020).
[66] PITKÄAHO T, MANNINEN A, NAUGHTON T J. Performance of autofocus capability of deep convolutional neural networks in digital holographic microscopy[C], W2A.5(2017).
[67] ZHANG Junchao, TIAN Xiaobo, SHAO Jianbo et al. Phase unwrapping in optical metrology via denoised and convolutional segmentation networks[J]. Optics Express, 27, 14903-14912(2019).
[68] LIU Tairan, DE HAAN K, RIVENSON Y et al. Deep learning-based super-resolution in coherent imaging systems[J]. Scientific Reports, 9, 3926(2019).
[69] RIVENSON Y, LIU Tairan, WEI Zhensong et al. PhaseStain: the digital staining of label-free quantitative phase microscopy images using deep learning[J]. Light: Science & Applications, 8, 23(2019).
[70] HU Chenfei, HE Shenghua, LEE Y J et al. Live-dead assay on unlabeled cells using phase imaging with computational specificity[J]. Nature Communications, 13, 713(2022).
[71] POPESCU G[M]. Quantitative phase imaging of cells and tissues(2011).
[72] CHEN Xi, KANDEL M E, POPESCU G. Spatial light interference microscopy: principle and applications to biomedicine[J]. Advances in Optics and Photonics, 13, 353-425(2021).
[73] HU Chenfei, POPESCU G. Physical significance of backscattering phase measurements[J]. Optics Letters, 42, 4643-4646(2017).
[74] BRUNING J H, HERRIOTT D R, GALLAGHER J et al. Digital wavefront measuring interferometer for testing optical surfaces and lenses[J]. Applied Optics, 13, 2693-2703(1974).
[75] PARK Y, DEPEURSINGE C, POPESCU G. Quantitative phase imaging in biomedicine[J]. Nature Photonics, 12, 578-589(2018).
[76] HUSSAIN A, MARTÍNEZ J L, LIZANA A et al. Super resolution imaging achieved by using on-axis interferometry based on a spatial light modulator[J]. Optics Express, 21, 9615-9623(2013).
[77] CRUZ M L, CASTRO A, ARRIZÓN V. Phase shifting digital holography implemented with a twisted-nematic liquid-crystal display[J]. Applied Optics, 48, 6907-6912(2009).
[78] CAI L Z, LIU Q, YANG X L. Generalized phase-shifting interferometry with arbitrary unknown phase steps for diffraction objects[J]. Optics Letters, 29, 183-185(2004).
[79] GAO Peng, YAO Baoli, LINDLEIN N et al. Phase-shift extraction for generalized phase-shifting interferometry[J]. Optics Letters, 34, 3553-3555(2009).
[80] LI Enbang, YAO Jianquan, YU Daoyin et al. Optical phase shifting with acousto-optic devices[J]. Optics Letters, 30, 189-191(2005).
[81] VANNONI M, SORDINI A, MOLESINI G. He-Ne laser wavelength-shifting interferometry[J]. Optics Communications, 283, 5169-5172(2010).
[82] SCHREIBER H, BRUNING J H[M]. Phase shifting interferometry(2007).
[83] CREATH K. Phase-measurement interferometry techniques[J]. Progress in Optics, 26, 349-393(1988).
[84] SMYTHE R, MOORE R. Instantaneous phase measuring interferometry[J]. Optical Engineering, 23, 234361(1984).
[85] SIVAKUMAR N R, HUI W K, VENKATAKRISHNAN K et al. A. Large surface profile measurement with instantaneous phase-shifting interferometry[J]. Optical Engineering, 42, 367-372(2003).
[86] NOVAK M, MILLERD J, BROCK N et al. Analysis of a micropolarizer array-based simultaneous phase-shifting interferometer[J]. Applied Optics, 44, 6861-6868(2005).
[87] KAKUE T, MORITANI Y, ITO K et al. Image quality improvement of parallel four-step phase-shifting digital holography by using the algorithm of parallel two-step phase-shifting digital holography[J]. Optics Express, 18, 9555-9560(2010).
[88] LIANG Dong, ZHANG Qiu, WANG Jing et al. Single-shot Fresnel incoherent digital holography based on geometric phase lens[J]. Journal of Modern Optics, 67, 92-98(2020).
[89] TAHARA T, AWATSUJI Y, KANEKO A et al. Parallel two-step phase-shifting digital holography using polarization[J]. Optical Review, 17, 108-113(2010).
[90] GAO Peng, YAO Baoli. MIN Junwei,[J]. Optics Communications, 284, 4136-4140(2011).
[91] GAO Peng, YAO Baoli, MIN Junwei et al. Parallel two-step phase-shifting point-diffraction interferometry for microscopy based on a pair of cube beamsplitters[J]. Optics Express, 19, 1930-1935(2011).
[92] BAI Hongyi, SHAN Mingguang, ZHONG Zhi et al. Parallel-quadrature on-axis phase-shifting common-path interferometer using a polarizing beam splitter[J]. Applied Optics, 54, 9513-9517(2015).
[93] RODRIGUEZ-ZURITA G, MENESES-FABIAN C, TOTO-ARELLANO N I et al. One-shot phase-shifting phase-grating interferometry with modulation of polarization: case of four interferograms[J]. Optics Express, 16, 7806-7817(2008).
[94] MENESES-FABIAN C, RODRIGUEZ-ZURITA G, ENCARNACION-GUTIERREZ M D C et al. Phase-shifting interferometry with four interferograms using linear polarization modulation and a Ronchi grating displaced by only a small unknown amount[J]. Optics Communications, 282, 3063-3068(2009).
[95] RODRIGUEZ-ZURITA G, TOTO-ARELLANO N I, MENESES-FABIAN C et al. One-shot phase-shifting interferometry: five, seven, and nine interferograms[J]. Optics Letters, 33, 2788-2790(2008).
[96] GAO Peng, YAO Baoli, HARDER I et al. Parallel two-step phase-shifting digital holograph microscopy based on a grating pair[J]. Journal of the Optical Society of America A, 28, 434-440(2011).
[97] YANG T D, KIM H J, LEE K J et al. Single-shot and phase-shifting digital holographic microscopy using a 2-D grating[J]. Optics Express, 24, 9480-9488(2016).
[98] SHAKED N T, RINEHART M T, WAX A. Dual-interference-channel quantitative-phase microscopy of live cell dynamics[J]. Optics Letters, 34, 767-769(2009).
[99] MIN Junwei, YAO Baoli, GAO Peng et al. Parallel phase-shifting interferometry based on Michelson-like architecture[J]. Applied Optics, 49, 6612-6616(2010).
[100] KIM T, ZHOU Renjie, MIR M et al. White-light diffraction tomography of unlabelled live cells[J]. Nature Photonics, 8, 256-263(2014).
[101] BOHREN C F, HUFMAN D R[M]. Absorption and scattering of light by small particles(1983).
[102] BHADURI B, EDWARDS C, PHAM H et al. Diffraction phase microscopy: principles and applications in materials and life sciences[J]. Advances in Optics and Photonics, 6, 57-119(2014).
[103] ZHANG Jiwei, DAI Siqing, MA Chaojie et al. A review of common-path off-axis digital holography: towards high stable optical instrument manufacturing[J]. Light: Advanced Manufacturing, 2, 23(2021).
[104] DYSON J. Common-path interferometer for testing purposes[J]. Journal of the Optical Society of America, 47, 386-390(1957).
[105] DYSON J. An interferometer microscope[J]. Proceedings of the Royal Society A, 204, 170-187(1950).
[106] DARDIKMAN G, SHAKED N. T. Is multiplexed off-axis holography for quantitative phase imaging more spatial bandwidth-efficient than on-axis holography? [Invited][J]. Journal of the Optical Society of America A, 36, A1-A11(2019).
[107] POLHEMUS C. Two-wavelength interferometry[J]. Applied Optics, 12, 2071-2074(1973).
[108] GASS J, DAKOFF A, KIM M K. Phase imaging without 2π ambiguity by multiwavelength digital holography[J]. Optics Letters, 28, 1141-1143(2003).
[109] JANG Y, JANG J, PARK Y K. Dynamic spectroscopic phase microscopy for quantifying hemoglobin concentration and dynamic membrane fluctuation in red blood cells[J]. Optics Express, 20, 9673-9681(2012).
[110] LUE N, KANG J W, HILLMAN T R et al. Single-shot quantitative dispersion phase microscopy[J]. Applied Physics Letters, 101, 84101(2012).
[111] TAHARA T, KAKU T, ARAI Y. Digital holography based on multiwavelength spatial-bandwidth-extended capturing-technique using a reference arm (Multi-SPECTRA)[J]. Optics Express, 22, 29594-29610(2014).
[112] TAYEBI B, KIM W, SHARIF F et al. Single-shot and label-free refractive index dispersion of single nerve fiber by triple-wavelength diffraction phase microscopy[J]. IEEE Journal of Selected Topics in Quantum Electronics, 25, 7200708(2019).
[113] ROITSHTAIN D, TURKO N A, JAVIDI B et al. Flipping interferometry and its application for quantitative phase microscopy in a micro-channel[J]. Optics Letters, 41, 2354-2357(2016).
[114] ROTMAN-NATIV N, TURKO N A, SHAKED N T. Flipping interferometry with doubled imaging area[J]. Optics Letters, 43, 5543-5546(2018).
[115] CHHANIWAL V, SINGH A S G, LEITGEB R A et al. Quantitative phase-contrast imaging with compact digital holographic microscope employing Lloyd's mirror[J]. Optics Letters, 37, 5127-5129(2012).
[116] FRENKLACH I, GIRSHOVITZ P, SHAKED N. Off-axis interferometric phase microscopy with tripled imaging area[J]. Optics Letters, 39, 1525(2014).
[117] NYGATE Y N, SINGH G, BARNEA I et al. Simultaneous off-axis multiplexed holography and regular fluorescence microscopy of biological cells[J]. Optics Letters, 43, 2587-2590(2018).
[118] BORN M, WOLF E[M]. Principles of optics: electromagnetic theory of propagation, interference and diffraction of light(2013).
[119] COTTE Y, TOY M F, SHAFFER E et al. Sub-Rayleigh resolution by phase imaging[J]. Optics Letters, 35, 2176-2178(2010).
[120] HORSTMEYER R, HEINTZMANN R, POPESCU G et al. Standardizing the resolution claims for coherent microscopy[J]. Nature Photonics, 10, 68-71(2016).
[121] MIRSKY S K, SHAKED N T. First experimental realization of six-pack holography and its application to dynamic synthetic aperture superresolution[J]. Optics Express, 27, 26708-26720(2019).
[122] MIRSKY S K, BARNEA I, SHAKED N T. Dynamic tomographic phase microscopy by double six-pack holography[J]. ACS Photonics, 9, 1295-1303(2022).
[123] BARDELL D. The Biologists' Forum: the invention of the microscope[J]. BIOS, 75, 78-84(2004).
[124] MCLEOD E, OZCAN A. Unconventional methods of imaging: computational microscopy and compact implementations[J]. Reports on Progress in Physics, 79, 076001(2016).
[125] OZCAN A. Mobile phones democratize and cultivate next-generation imaging, diagnostics and measurement tools[J]. Lab on a Chip, 14, 3187-3194(2014).
[126] MUDANYALI O, TSENG D, OH C et al. Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications[J]. Lab on a Chip, 10, 1417-1428(2010).
[127] SEO S, ISIKMAN S O, SENCAN I et al. High-throughput lens-free blood analysis on a chip[J]. Analytical Chemistry, 82, 4621-4627(2010).
[128] SEO S, SU T W, TSENG D K et al. Lensfree holographic imaging for on-chip cytometry and diagnostics[J]. Lab on a Chip, 9, 777-787(2009).
[129] LUO Wei, GREENBAUM A, ZHANG Yibo et al. Synthetic aperture-based on-chip microscopy[J]. Light: Science & Applications, 4, e261(2015).
[130] GREENBAUM A, ZHANG Y, FEIZI A et al. Wide-field computational imaging of pathology slides using lens-free on-chip microscopy[J]. Science Translational Medicine, 6, 267ra175(2014).
[131] TSENG D, MUDANYALI O, OZTOPRAK C et al. Lensfree microscopy on a cellphone[J]. Lab on a Chip, 10, 1787-1792(2010).
[132] ISIKMAN S, BISHARA W, MAVANDADI S et al. Lens-free optical tomographic microscope with a large imaging volume on a chip[J]. Proceedings of the National Academy of Sciences of the United States of America, 108, 7296-7301(2011).
[133] MISELL D. A method for the solution of the phase problem in electron microscopy[J]. Journal of Physics D: Applied Physics, 6, L6(1973).
[134] LATYCHEVSKAIA T, FINK H W. Solution to the twin image problem in holography[J]. Physical Review Letters, 98, 233901(2007).
[135] GREENBAUM A, OZCAN A. Maskless imaging of dense samples using pixel super-resolution based multi-height lensfree on-chip microscopy[J]. Optics Express, 20, 3129-3143(2012).
[136] HUANG Zhengzhong, KUANG Cuifang, XU Lin et al. Multiplane digital holography based on extrapolation iterations[J]. Optics Communications, 481, 126526(2021).
[137] BAO Peng, ZHANG Fucai, PEDRINI G et al. Phase retrieval using multiple illumination wavelengths[J]. Optics Letters, 33, 309-311(2008).
[138] GAO Yunhui, CAO Liangcai. Projected refractive index framework for multi-wavelength phase retrieval[J]. Optics Letters, 47, 5965-5968(2022).
[139] GAO Yunhui, CAO Liangcai. High-fidelity pixel-super-resolved complex field reconstruction via adaptive smoothing[J]. Optics Letters, 45, 6807-6810(2020).
[140] SOIFER V, KOTLYAR V, DOSKOLOVICH L[M]. Iterative methods for diffractive optical elements computation(1997).
[141] FIENUP J R. Phase retrieval algorithms: a personal tour[J]. Applied Optics, 52, 45-56(2013).
[142] LIU Zhengjun, DAI Jingmin, SUN Xiaogang et al. Generation of hollow Gaussian beam by phase-only filtering[J]. Optics Express, 16, 19926-19933(2008).
[143] ELSER V. Phase retrieval by iterated projections[J]. Journal of the Optical Society of America A, 20, 40-55(2003).
[144] ALLEN L J, OXLEY M P. Phase retrieval from series of images obtained by defocus variation[J]. Optics Communications, 199, 65-75(2001).
[145] ZUO Chao, LI Jiaji, SUN Jiasong et al. Transport of intensity equation: a tutorial[J]. Optics and Lasers in Engineering, 135, 106187(2020).
[146] ZUO Chao, SUN Jiasong, ZHANG Jialin et al. Lensless phase microscopy and diffraction tomography with multi-angle and multi-wavelength illuminations using a LED matrix[J]. Optics Express, 23, 14314-14328(2015).
[147] WALLER L, TIAN Lei, BARBASTATHIS G. Transport of intensity phase-amplitude imaging with higher order intensity derivatives[J]. Optics Express, 18, 12552-12561(2010).
[148] ZUO Chao, CHEN Qian, YU Yingjie et al. Transport-of-intensity phase imaging using savitzky-golay differentiation filter-theory and applications[J]. Optics Express, 21, 5346-5362(2013).
[149] SCHMALZ J A, GUREYEV T E, PAGANIN D M et al. Phase retrieval using radiation and matter-wave fields: Validity of teague's method for solution of the transport-of-intensity equation[J]. Physical Review A, 84, 023808(2011).
[150] ZUO Chao, CHEN Qian, HUANG Lei. Phase discrepancy analysis and compensation for fast fourier transform based solution of the transport of intensity equation[J]. Optics Express, 22, 17172-17186(2014).
[151] WEIDLING J, ISIKMAN S O, GREENBAUM A et al. Lens-free computational imaging of capillary morphogenesis within three-dimensional substrates[J]. Journal of Biomedical Optics, 17, 126018(2012).
[152] LUO Wei, ZHANG Yibo, GÖRÖCS Z et al. Propagation phasor approach for holographic image reconstruction[J]. Scientific Reports, 6, 22738(2016).
[153] ZHENG Guoan, HORSTMEYER R, YANG C. Wide-field, high-resolution Fourier ptychographic microscopy[J]. Nature Photonics, 7, 739-745(2013).
[154] MARRISON J, RATY L, MARRIOTT P et al. Ptychography-a label free, high-contrast imaging technique for live cells using quantitative phase information[J]. Scientific Reports, 3, 2369(2013).
[155] TIAN Lei, WALLER L. 3D intensity and phase imaging from light field measurements in an LED array microscope[J]. Optica, 2, 104-111(2015).
[156] GODDEN T M, MUNIZ-PINIELLA A, CLAVERLEY J D et al. Phase calibration target for quantitative phase imaging with ptychography[J]. Optics Express, 24, 7679-7692(2016).
[157] WALLER L, KOU S S, SHEPPARD C J R et al. Phase from chromatic aberrations[J]. Optics Express, 18, 22817-22825(2010).
[158] NOOM D W E, EIKEMA K S E, WITTE S. Lensless phase contrast microscopy based on multiwavelength fresnel diffraction[J]. Optics Letters, 39, 193-196(2014).
[159] ZHANG Wenhui, CAO Liangcai, BRADY D J et al. Twin-image-free holography: a compressive sensing approach[J]. Physical Review Letters, 121, 093902(2018).
[160] RIVENSON Y, STERN A, JAVIDI B. Overview of compressive sensing techniques applied in holography [Invited][J]. Applied Optics, 52, A423-A432(2013).
[161] WU Jiachen, ZHANG Hua, ZHANG Wenhui et al. Single-shot lensless imaging with fresnel zone aperture and incoherent illumination[J]. Light: Science & Applications, 9, 1-11(2020).
[162] LATYCHEVSKAIA T, FINK H W. Resolution enhancement in digital holography by self-extrapolation of holograms[J]. Optics Express, 21, 7726-7733(2013).
[163] HUANG Zhengzhong, CAO Liangcai. Bicubic interpolation and extrapolation iteration method for high resolution digital holographic reconstruction[J]. Optics and Lasers in Engineering, 130, 106090(2020).
[164] CHEN Yang, WU Xxuejuan, LU Linpeng et al. Single-shot lensfree on-chip quantitative phase microscopy with partially coherent LED illumination[J]. Optics Letters, 47, 6061-6064(2022).
[165] HUANG Zhengzhong, MEMMOLO P, FERRARO P, al et. Dual-plane coupled phase retrieval for non-prior holographic imaging[J]. PhotoniX, 3, 3(2022).
[166] KRONIG R D L. On the theory of dispersion of x-rays[J]. Journal of the Optical Society of America, 12, 547-557(1926).
[167] KRAMERS H A. La diffusion de la lumière par les atomes[J]. Transactions of Volta Centenary Congress, 2, 545-557(1927).
[168] MARPLE L. Computing the discrete-time “analytic” signal via FFT[J]. IEEE Transactions on Signal Processing, 47, 2600-2603(1999).
[169] OH J, HUGONNET H, PARK Y K. Quantitative phase imaging via the holomorphic property of complex optical fields[J]. Physical Review Research, 5, L022014(2023).
[170] SHEN Cheng, LIANG Mingshu, PAN Analet. Non-iterative complex wave-field reconstruction based on Kramers-Kronig relations[J]. Photonics Research, 9, 1003-1012(2021).
[171] LEE K R, LIM J, PARK Y K. Full-field quantitative X-ray phase nanotomography via space-domain Kramers-Kronig relations[J]. Optica, 10, 407-414(2023).
[172] MICÓ V, ZHENG Juanjuan, GARCIA J et al. Resolution enhancement in quantitative phase microscopy[J]. Advances in Optics and Photonics, 11, 135-214(2019).
[173] GAO Peng, YUAN Caojin. Resolution enhancement of digital holographic microscopy via synthetic aperture: a review[J]. Light: Advanced Manufacturing, 3, 6(2022).
[174] ALEXANDROV S A, HILLMAN T R, GUTZLER T et al. Synthetic aperture Fourier holographic optical microscopy[J]. Physical Review Letters, 97, 168102(2006).
[175] ZHENG Cheng, JIN Di, HE Yanping et al. High spatial and temporal resolution synthetic aperture phase microscopy[J]. Advanced Photonics, 2, 065002(2020).
[176] CHEN Xin, ZHONG Suyi, HOU Yiwei et al. Superresolution structured illumination microscopy reconstruction algorithms: a review[J]. Light: Science & Applications, 12, 172(2023).
[177] GAO Peng, PEDRINI G, OSTEN W. Structured illumination for resolution enhancement and autofocusing in digital holographic microscopy[J]. Optics Letters, 38, 1328-1330(2013).
[178] PARK Y, CHOI W, YAQOOB Z et al. Speckle-field digital holographic microscopy[J]. Optics Express, 17, 12285-12292(2009).
[179] CHOI Y, YANG T D, FANG-YEN C et al. Overcoming the diffraction limit using multiple light scattering in a highly disordered medium[J]. Physical Review Letters, 107, 023902(2011).
[180] ZHENG Juanjuan, PEDRINI G, GAO Peng et al. Autofocusing and resolution enhancement in digital holographic microscopy by using speckle illumination[J]. Journal of Optics, 17, 085301(2015).
[181] KUŚ A, KRAUZE W, KUJAWIŃSKA M. Limited-angle, holographic tomography with optically controlled projection generation[C], 933007(2015).
[182] SHIN S, KIM K, YOON J et al. Active illumination using a digital micromirror device for quantitative phase imaging[J]. Optics Letters, 40, 5407-5410(2015).
[183] MEMMOLO P, MICCIO L, MEROLA F et al. 3D morphometry of red blood cells by digital holography[J]. Cytometry Part A, 85, 1030-1036(2014).
[184] HABAZA M, GILBOA B, ROICHMAN Y et al. Tomographic phase microscopy with 180 degrees rotation of live cells in suspension by holographic optical tweezers[J]. Optics Letters, 40, 1881-1884(2015).
[185] MÜLLER P, SCHÜRMANN M, CHAN C J et al. Single-cell diffraction tomography with optofluidic rotation about a tilted axis[C], 95480U(2015).
[186] HUANG Zhengzhong, YANG Feng, LIU Bo et al. Aberration-free synthetic aperture phase microscopy based on alternating direction method[J]. Optics and Lasers in Engineering, 160, 107301(2023).
[187] HUANG Zhengzhong, CAO Liangcai. Phase aberration separation for holographic microscopy by alternating direction sparse optimization[J]. Optics Express, 31, 12520-12533(2023).
[188] DEBAILLEUL M, GEORGES V, SIMON B et al. High-resolution three-dimensional tomographic diffractive microscopy of transparent inorganic and biological samples[J]. Optics Letters, 34, 79-81(2009).
[189] VERTU S, DELAUNAY J J, YAMADA I et al. Diffraction microtomography with sample rotation: influence of a missing apple core in the recorded frequency space[J]. Central European Journal of Physics, 7, 22-31(2009).
[190] LIN Yuchih, CHENG Chaujern. Sectional imaging of spatially refractive index distribution using coaxial rotation digital holographic microtomography[J]. Journal of Optics, 16, 065401(2014).
[191] VERTU S, FLÜGGE J, DELAUNAY J J et al. Improved and isotropic resolution in tomographic diffractive microscopy combining sample and illumination rotation[J]. Central European Journal of Physics, 9, 969-974(2011).
[192] SIMON B, DEBAILLEUL M, HOUKAL M et al. Tomographic diffractive microscopy with isotropic resolution[J]. Optica, 4, 460-463(2017).
[193] CHEN M, REN D, LIU H Y et al. Multi-layer Born multiple-scattering model for 3D phase microscopy[J]. Optica, 7, 394-403(2020).
[194] YASUHIKO O, TAKEUCHI K. In-silico clearing approach for deep refractive index tomography by partial reconstruction and wave-backpropagation[J]. Light: Science & Applications, 12, 101(2023).
[195] KAMILOV U S, PAPADOPOULOS I N, SHOREH M H et al. Learning approach to optical tomography[J]. Optica, 2, 517-522(2015).
[196] LIM J, AYOUB A B, ANTOINE E E et al. High-fidelity optical diffraction tomography of multiple scattering samples[J]. Light: Science & Applications, 8, 82(2019).
[197] SABA A, GIGLI C, AYOUB A B et al. Physics-informed neural networks for diffraction tomography[J]. Advanced Photonics, 4, 066001(2021).
[198] LEE M, HUGONNET H, PARK Y K. Inverse problem solver for multiple light scattering using modified Born series[J]. Optica, 9, 177-182(2022).
[199] PHAM T A, SOUBIES E, AYOUB A et al. Three-dimensional optical diffraction tomography with lippmann-schwinger model[J]. IEEE Transactions on Computational Imaging, 6, 727-738(2020).
[200] SONG S, KIM J, MOON T et al. Polarization-sensitive intensity diffraction tomography[J]. Light: Science & Applications, 12, 124(2023).
[201] SABA A, LIM J, AYOUB A B et al. Polarization-sensitive optical diffraction tomography[J]. Optica, 8, 402-408(2021).
[202] MU Shuqi, SHI Yingtong, SONG Yintong et al. Multislice computational model for birefringent scattering[J]. Optica, 10, 81-89(2023).
[203] BACHG A C, HORSTHEMKE M, SKRYABIN B V et al. Phenotypic analysis of Myo10 knockout (Myo10tm2/tm2) mice lacking full-length (motorized) but not brain-specific headless myosin X[J]. Scientific Reports, 9, 597(2019).
[204] POPESCU G, IKEDA T, BEST C et al. Erythrocyte structure and dynamics quantified by Hilbert phase microscopy[J]. Journal of Biomedical Optics, 10, 060503(2005).
[205] MA Wei, LIU Zhaocheng, KUDYSHEV Z A et al. Deep learning for the design of photonic structures[J]. Nature Photonics, 15, 77-90(2021).
[206] JANG Y, JANG J, PARK Y K. Dynamic spectroscopic phase microscopy for quantifying hemoglobin concentration and dynamic membrane fluctuation in red blood cells[J]. Optics Express, 20, 9673-9681(2012).
[207] BARBER D J[M]. Transmission electron microscopy: physics of image formation and microanalysis(1985).
[208] LANG K M, HITE D A, SIMMONDS R W et al. Conducting atomic force microscopy for nanoscale tunnel barrier forcharacterization[J]. Review of Scientific Instruments, 75, 2726-2731(2004).
[209] BINNING G, ROHRER H, GERBER C et al[M]. Surface studies by scanning tunneling microscopy(1982).
[210] HE Yanping, SHAO Qi, CHEN Shihchi et al. Characterization of two-photon photopolymerization fabrication using high-speed optical diffraction tomography[J]. Additive Manufacturing, 60, 103293(2022).
[211] GREENBAUM A, LUO Wei, KHADEMHOSSEINIEH B et al. Increased space-bandwidth product in pixel super-resolved lensfree on-chip microscopy[J]. Scientific Reports, 3, 1717(2013).
[212] DEFIENNE H, NDAGANO B, LYONS A et al. Polarization entanglement-enabled quantum holography[J]. Nature Physics, 17, 591-597(2021).
[213] JO Y, CHO H, PARK W S et al. Label-free multiplexed microtomography of endogenous subcellular dynamics using generalizable deep learning[J]. Nature Cell Biology, 23, 1329-1337(2021).
[214] SHIN S, EUN J, LEE S S et al. Tomographic measurement of dielectric tensors at optical frequency[J]. Nature Materials, 21, 317-324(2022).
Get Citation
Copy Citation Text
Zhengzhong HUANG, Liangcai CAO. Digital Holography and Quantitative Phase Imaging: Advances and Prospects (Invtied)[J]. Acta Photonica Sinica, 2024, 53(9): 0911001
Category: Imaging Systems
Received: May. 16, 2024
Accepted: Aug. 23, 2024
Published Online: Nov. 13, 2024
The Author Email: Liangcai CAO (clc@tsinghua.edu.cn)