Ultrafast Science, Volume. 2, Issue 1, 9760631(2022)

Birefringence-Managed Normal-Dispersion Fiber Laser Delivering Energy-Tunable Chirp-Free Solitons

Dong Mao1, Zhiwen He1, Qun Gao1, Chao Zeng1, Ling Yun2, Yueqing Du1, Hua Lu1, Zhipei Sun3、*, and Jianlin Zhao1、*
Author Affiliations
  • 1Northwestern Polytechnical University, School of Physical Science and Technology, Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, Shaanxi Key Laboratory of Optical Information Technology, Xi’an, China, 710129
  • 2Nanjing University of Posts and Telecommunications, College of Electronic and Optical Engineering & College of Microelectronics, Nanjing, China, 210046
  • 3Aalto University, Department of Electronics and Nanoengineering and QTF Centre of Excellence, Aalto, Finland
  • show less
    References(56)

    [1] [1] M. Peccianti, A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Demonstration of a stable ultrafast laser based on a nonlinear microcavity,” Nature Communications, vol. 3, no. 1, p. 765, 2012

    [3] [3] C. Lecaplain, P. Grelu, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative rogue waves generated by chaotic pulse bunching in a mode-locked laser,” Physical Review Letters, vol. 108, no. 23, article 233901, 2012

    [5] [5] X. Yuan, T. Yang, J. Chen, X. He, H. Huang, S. Xu, and Z. Yang, “Experimental observation of vector solitons in a highly birefringent cavity of ytterbium-doped fiber laser,” Optics Express, vol. 21, no. 20, pp. 23866–23872, 2013

    [6] [6] M. E. Fermann, and I. Hartl, “Ultrafast fibre lasers,” Nature Photonics, vol. 7, no. 11, pp. 868–874, 2013

    [7] [7] D. G. Abdelsalam Ibrahim, and T. Yasui, “High-precision 3D surface topography measurement using high-stable multi-wavelength digital holography referenced by an optical frequency comb,” Optics Letters, vol. 43, no. 8, pp. 1758–1761, 2018

    [8] [8] M. Ebrahim-Zadeh, and S. Chaitanya Kumar, “Yb-fiber-laser-pumped ultrafast frequency conversion sources from the mid-infrared to the ultraviolet,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 20, no. 5, pp. 624–642, 2014

    [9] [9] Z. Lin, and M. Hong, “Femtosecond laser precision engineering: from micron, submicron, to nanoscale,” Ultrafast Science, vol. 2021, article 9783514, –22, 2021

    [10] [10] D. Y. Tang, H. Zhang, L. M. Zhao, and X. Wu, “Observation of high-order polarization-locked vector solitons in a fiber laser,” Physical Review Letters, vol. 101, no. 15, article 153904, 2008

    [12] [12] L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Applied Physics B: Lasers and Optics, vol. 65, no. 2, pp. 277–294, 1997

    [13] [13] K. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, “77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser,” Optics Letters, vol. 18, no. 13, pp. 1080–1082, 1993

    [14] [14] S. K. Turitsyn, B. G. Bale, and M. P. Fedoruk, “Dispersion-managed solitons in fibre systems and lasers,” Physics Reports, vol. 521, no. 4, pp. 135–203, 2012

    [15] [15] W. He, M. Pang, C. R. Menyuk, and P. St. J. Russell, “Sub-100-fs 187 GHz mode-locked fiber laser using stretched-soliton effects,” Optica, vol. 3, no. 12, pp. 1366–1372, 2016

    [16] [16] F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-Similar evolution of parabolic pulses in a laser,” Physical Review Letters, vol. 92, no. 21, article 213902, 2004

    [17] [17] B. Oktem, C. Ülgüdür, and F. Ö. Ilday, “Soliton-similariton fibre laser,” Nature Photonics, vol. 4, no. 5, pp. 307–311, 2010

    [18] [18] K. Kieu, W. H. Renninger, A. Chong, and F. W. Wise, “Sub-100 fs pulses at watt-level powers from a dissipative-soliton fiber laser,” Optics Letters, vol. 34, no. 5, pp. 593–595, 2009

    [19] [19] P. Grelu, and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nature Photonics, vol. 6, no. 2, pp. 84–92, 2012

    [20] [20] J. W. Haus, G. Shaulov, E. A. Kuzin, and J. Sanchez-Mondragon, “Vector soliton fiber lasers,” Optics Letters, vol. 24, no. 6, pp. 376–378, 1999

    [21] [21] B. C. Collings, S. T. Cundiff, N. N. Akhmediev, J. M. Soto-Crespo, K. Bergman, and W. H. Knox, “Polarization-locked temporal vector solitons in a fiber laser: experiment,” Journal of the Optical Society of America B, vol. 17, no. 3, pp. 354–365, 2000

    [22] [22] Y. S. Fedotov, S. M. Kobtsev, R. N. Arif, A. G. Rozhin, C. Mou, and S. K. Turitsyn, “Spectrum-, pulsewidth-, and wavelength-switchable all-fiber mode-locked Yb laser with fiber based birefringent filter,” Optics Express, vol. 20, no. 16, pp. 17797–17805, 2012

    [23] [23] S. V. Sergeyev, H. Kbashi, N. Tarasov, Y. Loiko, and S. A. Kolpakov, “Vector-resonance-multimode instability,” Physical Review Letters, vol. 118, no. 3, article 033904, 2017

    [24] [24] D. J. Jones, H. A. Haus, and E. P. Ippen, “Subpicosecond solitons in an actively mode-locked fiber laser,” Optics Letters, vol. 21, no. 22, pp. 1818–1820, 1996

    [25] [25] A. Chong, W. H. Renninger, and F. W. Wise, “Environmentally stable all-normal-dispersion femtosecond fiber laser,” Optics Letters, vol. 33, no. 10, pp. 1071–1073, 2008

    [26] [26] M. N. Islam, C. D. Poole, and J. P. Gordon, “Soliton trapping in birefringent optical fibers,” Optics Letters, vol. 14, no. 18, pp. 1011–1013, 1989

    [27] [27] S. T. Cundiff, B. C. Collings, N. N. Akhmediev, J. M. Soto-Crespo, K. Bergman, and W. H. Knox, “Observation of polarization-locked vector solitons in an optical fiber,” Physical Review Letters, vol. 82, no. 20, pp. 3988–3991, 1999

    [28] [28] D. Mao, Z. He, Y. Zhang, Y. Du, C. Zeng, L. Yun, Z. Luo, T. Li, Z. Sun, and J. Zhao, “Phase-matching-induced near-chirp-free solitons in normal-dispersion fiber lasers,” Light: Science & Applications, vol. 11, no. 1, p. 25, 2022

    [29] [29] H. Zhang, D. Tang, R. J. Knize, L. Zhao, Q. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Applied Physics Letters, vol. 96, no. 11, article 111112, 2010

    [30] [30] W. Tian, Z. Wang, J. Liu, J. Zhu, L. Zheng, X. Xu, J. Xu, and Z. Wei, “Dissipative soliton and synchronously dual-wavelength mode-locking Yb:YSO lasers,” Optics Express, vol. 23, no. 7, pp. 8731–8739, 2015

    [31] [31] K. Goda, and B. Jalali, “Dispersive Fourier transformation for fast continuous single-shot measurements,” Nature Photonics, vol. 7, no. 2, pp. 102–112, 2013

    [32] [32] G. P. Agrawal Nonlinear Fiber Optics, Academic Press, 3th, New York, 2001

    [33] [33] D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Physical Review A, vol. 72, no. 4, article 043816, 2005

    [34] [34] L. M. Zhao, D. Y. Tang, H. Zhang, X. Wu, and N. Xiang, “Soliton trapping in fiber lasers,” Optics Express, vol. 16, no. 13, pp. 9528–9533, 2008

    [35] [35] H. Zhang, D. Y. Tang, L. M. Zhao, X. Wu, and H. Y. Tam, “Dissipative vector solitons in a dispersionmanaged cavity fiber laser with net positive cavity dispersion,” Optics Express, vol. 17, no. 2, pp. 455–460, 2009

    [36] [36] S. A. Babin, E. V. Podivilov, D. S. Kharenko, A. E. Bednyakova, M. P. Fedoruk, V. L. Kalashnikov, and A. Apolonski, “Multicolour nonlinearly bound chirped dissipative solitons,” Nature Communications, vol. 5, no. 1, article 4653, 2014

    [37] [37] D. Mao, X. Liu, D. Han, and H. Lu, “Compact all-fiber laser delivering conventional and dissipative solitons,” Optics Letters, vol. 38, no. 16, pp. 3190–3193, 2013

    [39] [39] K. Ozgoren, and F. Ö. Ilday, “All-fiber all-normal dispersion laser with a fiber-based Lyot filter,” Optics Letters, vol. 35, no. 8, pp. 1296–1298, 2010

    [40] [40] S. M. J. Kelly, “Characteristic sideband instability of periodically amplified average soliton,” Electronics Letters, vol. 28, no. 8, pp. 806–807, 1992

    [41] [41] A. B. Grudinin, D. J. Richardson, and D. N. Payne, “Passive harmonic modelocking of a fibre soliton ring laser,” Electronics Letters, vol. 29, no. 21, pp. 1860–1861, 1993

    [42] [42] S. Gray, A. B. Grudinin, W. H. Loh, and D. N. Payne, “Femtosecond harmonically mode-locked fiber laser with time jitter below 1 ps,” Optics Letters, vol. 20, no. 2, pp. 189–191, 1995

    [43] [43] G. Sobon, J. Sotor, and K. M. Abramski, “Passive harmonic mode-locking in Er-doped fiber laser based on graphene saturable absorber with repetition rates scalable to 2.22 GHz,” Applied Physics Letters, vol. 100, no. 16, article 161109, 2012

    [44] [44] Q. Hao, Y. Wang, P. Luo, H. Hu, and H. Zeng, “Self-starting dropout-free harmonic mode-locked soliton fiber laser with a low timing jitter,” Optics Letters, vol. 42, no. 12, pp. 2330–2333, 2017

    [45] [45] X. Wang, J. Peng, K. Huang, M. Yan, and H. Zeng, “Experimental study on buildup dynamics of a harmonic mode-locking soliton fiber laser,” Optics Express, vol. 27, no. 20, pp. 28808–28815, 2019

    [48] [48] P. Ryczkowski, M. Närhi, C. Billet, J. M. Merolla, G. Genty, and J. M. Dudley, “Real-time full-field characterization of transient dissipative soliton dynamics in a mode-locked laser,” Nature Photonics, vol. 12, no. 4, pp. 221–227, 2018

    [49] [49] Z. Q. Wang, K. Nithyanandan, A. Coillet, P. Tchofo-Dinda, and P. Grelu, “Optical soliton molecular complexes in a passively mode-locked fibre laser,” Nature Communications, vol. 10, no. 1, p. 830, 2019

    [50] [50] J. Peng, S. Boscolo, Z. Zhao, and H. Zeng, “Breathing dissipative solitons in mode-locked fiber lasers,” Science Advances, vol. 5, no. 11, article eaax1110, 2019

    [51] [51] G. Herink, B. Jalali, C. Ropers, and D. R. Solli, “Resolving the build-up of femtosecond mode-locking with single-shot spectroscopy at 90 MHz frame rate,” Nature Photonics, vol. 10, no. 5, pp. 321–326, 2016

    [52] [52] Y. Wang, X. Wang, J. Peng, M. Yan, K. Huang, and H. Zeng, “Experimental observation of transient mode-locking in the build-up stage of a soliton fiber laser,” Chinese Optics Letters, vol. 19, no. 7, article 071401, 2021

    [53] [53] X. Liu, X. Yao, and Y. Cui, “Real-time observation of the buildup of soliton molecules,” Physical Review Letters, vol. 121, no. 2, article 023905, 2018

    [54] [54] X. Dong, Q. Yang, C. Spiess, V. G. Bucklew, and W. H. Renninger, “Stretched-pulse soliton Kerr resonators,” Physical Review Letters, vol. 125, no. 3, article 033902, 2020

    [55] [55] J. Zou, C. Dong, H. Wang, T. du, and Z. Luo, “Towards visible-wavelength passively mode-locked lasers in all-fibre format,” Light: Science & Applications, vol. 9, no. 1, p. 61, 2020

    [56] [56] H. A. Haus, and W. S. Wong, “Solitons in optical communications,” Reviews of Modern Physics, vol. 68, no. 2, pp. 423–444, 1996

    Tools

    Get Citation

    Copy Citation Text

    Dong Mao, Zhiwen He, Qun Gao, Chao Zeng, Ling Yun, Yueqing Du, Hua Lu, Zhipei Sun, Jianlin Zhao. Birefringence-Managed Normal-Dispersion Fiber Laser Delivering Energy-Tunable Chirp-Free Solitons[J]. Ultrafast Science, 2022, 2(1): 9760631

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Mar. 10, 2022

    Accepted: Jul. 1, 2022

    Published Online: Sep. 28, 2023

    The Author Email: Zhipei Sun (zhipei.sun@aalto.fi), Jianlin Zhao (jlzhao@nwpu.edu.cn)

    DOI:10.34133/2022/9760631

    Topics