Laser & Optoelectronics Progress, Volume. 61, Issue 24, 2428003(2024)

Fast Hyperspectral Image Anomaly Detection Based on Orthogonal Projection

Kaixing He1, Zheng Jiang1,2、*, Bin Liu1,2, and Xiaokang Zhang1
Author Affiliations
  • 1College of Information Science and Engineering, Wuhan University of Science and Technology, Wuhan 430081, Hubei , China
  • 2Engineering Research Center for Metallurgical Automation and Measurement Technology of Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081, Hubei , China
  • show less
    References(30)

    [7] Schaum A. Joint subspace detection of hyperspectral targets[C](2004).

    [14] Wu Q, Fan Y G, Fan B W et al. Graph regularized low-rank and collaborative representation for hyperspectral anomaly detection[J]. Laser & Optoelectronics Progress, 59, 1228003(2022).

    [21] Lei M Y. Hyperspectral unmixing based on deep learning and spatial-spectral joint prior[D](2022).

    [24] Yang G L, Gong J R, Xi H et al. Hyperspectral image abnormal target detection based on end-member extraction and low-rank and sparse matrix decomposition[J]. Laser & Optoelectronics Progress, 58, 2228003(2021).

    [30] He R, Xu Z Q, Wu S Q et al. Fast robust component analysis with rank constraint and applications[J]. Acta Electronica Sinica, 51, 1448-1457(2023).

    Tools

    Get Citation

    Copy Citation Text

    Kaixing He, Zheng Jiang, Bin Liu, Xiaokang Zhang. Fast Hyperspectral Image Anomaly Detection Based on Orthogonal Projection[J]. Laser & Optoelectronics Progress, 2024, 61(24): 2428003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Remote Sensing and Sensors

    Received: Mar. 12, 2024

    Accepted: Apr. 25, 2024

    Published Online: Dec. 12, 2024

    The Author Email: Zheng Jiang (zjiangmail@126.com)

    DOI:10.3788/LOP240872

    CSTR:32186.14.LOP240872

    Topics