Acta Optica Sinica, Volume. 41, Issue 22, 2210001(2021)

Hyperspectral Classification Based on 3D Convolutional Neural Network and Super Pixel Segmentation

Qiang Guo* and Long Peng
Author Affiliations
  • College of Physics and Optoelectronics Engineering, Harbin Engineering University, Harbin, Heilongjiang 150001, China
  • show less
    References(18)

    [1] Kruse F A, Boardman J W, Huntington J F. Comparison of airborne hyperspectral data and EO-1 Hyperion for mineral mapping[J]. IEEE Transactions on Geoscience and Remote Sensing, 41, 1388-1400(2003).

    [2] Prasad S, Bruce L M. Limitations of principal components analysis for hyperspectral target recognition[J]. IEEE Geoscience and Remote Sensing Letters, 5, 625-629(2008).

    [3] Thenkabail P S. Smith R B, de Pauw E. Hyperspectral vegetation indices and their relationships with agricultural crop characteristics[J]. Remote Sensing of Environment, 71, 158-182(2000).

    [4] Rao L B, Pang T, Ji R S et al. Firmness detection for apples based on hyperspectral imaging technology combined with stack autoencoder-extreme learning machine method[J]. Laser & Optoelectronics Progress, 56, 113001(2019).

    [5] Liu L X, He D, Li M Z et al. Identification of Xinjiang jujube varieties based on hyperspectral technique and machine learning[J]. Chinese Journal of Lasers, 47, 1111002(2020).

    [6] Xiang L B, Wang Z H, Liu X B et al. Hyperspectral imager of the environment and disaster monitoring small satellite[J]. Remote Sensing Technology and Application, 24, 257-262, 250(2009).

    [7] Jusoff K. Precision forestry using airborne hyperspectral imaging sensor[J]. Journal of Agricultural Science, 1, 142-147(2009).

    [8] Zhao S H, Zhang F, Wang Q et al. Application of hyper-spectral remote sensing technology in environmental protection[J]. Spectroscopy and Spectral Analysis, 33, 3343-3348(2013).

    [9] Zhao Q D, Ge X Y, Ding J L et al. Combination of fractional order differential and machine learning algorithm for spectral estimation of soil organic carbon content[J]. Laser & Optoelectronics Progress, 57, 153001(2020).

    [11] Shafri H Z M, Suhaili A, Mansor S. The performance of maximum likelihood, spectral angle mapper, neural network and decision tree classifiers in hyperspectral image analysis[J]. Journal of Computer Science, 3, 419-423(2007).

    [13] Farrell M D, Mersereau R M. On the impact of PCA dimension reduction for hyperspectral detection of difficult targets[J]. IEEE Geoscience and Remote Sensing Letters, 2, 192-195(2005).

    [14] Jiao B L, Fan C L, Wang Z H. Multidimensional scaling used for image classification based on binary partition trees[J]. Computer Engineering and Applications, 51, 179-182, 192(2015).

    [15] Amato U, Cavalli R M, Palombo A et al. Experimental approach to the selection of the components in the minimum noise fraction[J]. IEEE Transactions on Geoscience and Remote Sensing, 47, 153-160(2009).

    [16] Wang J, Chang C I. Independent component analysis-based dimensionality reduction with applications in hyperspectral image analysis[J]. IEEE Transactions on Geoscience and Remote Sensing, 44, 1586-1600(2006).

    [17] Fang L Y, Li S T, Kang X D et al. Spectral-spatial classification of hyperspectral images with a superpixel-based discriminative sparse model[J]. IEEE Transactions on Geoscience and Remote Sensing, 53, 4186-4201(2015).

    [18] Zhang L, Li H, Shen P Y et al. Improving semantic image segmentation with a probabilistic superpixel-based dense conditional random field[J]. IEEE Access, 6, 15297-15310(2018).

    Tools

    Get Citation

    Copy Citation Text

    Qiang Guo, Long Peng. Hyperspectral Classification Based on 3D Convolutional Neural Network and Super Pixel Segmentation[J]. Acta Optica Sinica, 2021, 41(22): 2210001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Mar. 1, 2021

    Accepted: May. 31, 2021

    Published Online: Nov. 17, 2021

    The Author Email: Guo Qiang (958542705@qq.com)

    DOI:10.3788/AOS202141.2210001

    Topics