Opto-Electronic Engineering, Volume. 45, Issue 2, 170728(2018)

The applications of surface plasmons in Ga2O3 ultraviolet photodetector

Shi Xionglin1、*, Liu Hongyu2, Hou Shuang2, Qian Lingxuan2, and Liu Xingzhao2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(24)

    [1] [1] Oshima T, Okuno T, Fujita S. Ga2O3 thin film growth on c-plane sapphire substrates by molecular beam epitaxy for deep-ultraviolet photodetectors[J]. Japanese Journal of Applied Physics, 2007, 46(11): 7217–7220.

    [2] [2] Guo D Y, Wu Z P, An Y H, et al. Oxygen vacancy tuned Ohmic- Schottky conversion for enhanced performance in -Ga2O3 solar-blind ultraviolet photodetectors[J]. Applied Physics Letters, 2014, 105(2): 023507.

    [3] [3] Qian L X, Zhang H F, LAI P T, et al. High-sensitivity -Ga2O3 solar-blind photodetector on high-temperature pretreated c-plane sapphire substrate[J]. Optical Materials Express, 2017, 7(10): 3643–3653.

    [4] [4] Xu K C, Zhang C T, Lu T H, et al. Hybrid metal-insulator-metal structures on Si nanowires array for surface enhanced Raman scattering[J]. Opto-Electronic Engineering, 2017, 44(2): 185–191.

    [5] [5] Zhou R, Li F P. Synthesis of nanoparticles by short pulsed laser ablation and its applications in nonlinear optics[J]. Opto-Electronic Engineering, 2017, 44(2): 172–184.

    [6] [6] An Y H, Chu X L, Huang Y Q, et al. Au Plasmon enhanced high performance β-Ga2O3 solar-blind photo-detector[J]. Progress in Natural Science: Materials International, 2016, 26(1): 65–68.

    [7] [7] Chan G H, Zhao J, Schatz G C, et al. Localized surface plasmon resonance spectroscopy of triangular aluminum nanoparticles[ J]. Journal of Physical Chemistry C, 2008, 112(36): 13958–13963.

    [8] [8] Wang Y, Ge C W, Zou Y F, et al. Plasmonic indium nanoparticle- induced high-performance photoswitch for blue light detection[ J]. Advanced Optical Materials, 2016, 4(2): 291–296.

    [9] [9] Haynes C L, Van Duyne R P. Plasmon-sampled surface- enhanced Raman excitation spectroscopy[J]. Journal of Physical Chemistry B, 2003, 107(30): 7426–7433.

    [10] [10] Sherry L J, Jin R C, Mirkin C A, et al. Localized surface Plasmon resonance spectroscopy of single silver triangular nanoprisms[ J]. Nano Letters, 2006, 6(9): 2060–2065.

    [11] [11] Sherry L J, Chang S H, Schatz G C, et al. Localized surface Plasmon resonance spectroscopy of single silver nanocubes[J]. Nano Letters, 2005, 5(10): 2034–2038.

    [12] [12] HuangW Y, Qian W, El-Sayed M A. Coherent vibrational oscillation in gold prismatic monolayer periodic nanoparticle arrays[ J]. Nano Letters, 2004, 4(9): 1741–1747.

    [13] [13] Villesen T F, Uhrenfeldt C, Johansen B, et al. Self-assembled Al nanoparticles on Si and fused silica, and their application for Si solar cells[J]. Nanotechnology, 2013, 24(27): 275606.

    [14] [14] Yang J, Luo F F, Kao T S, et al. Design and fabrication of broadband ultralow reflectivity black Si surfaces by laser micro/ nanoprocessing[J]. Light: Science & Applications, 2014, 3(7): e185.

    [15] [15] Yang L Y, Li X, Tuo X G, et al. Alloy nanoparticle plasmon resonance for enhancing broadband antireflection of laser- textured silicon surfaces[J]. Optics Express, 2011, 19(S4): A657–A663.

    [16] [16] Li D B, Sun X J, Song H, et al. Realization of a high-performance GaN UV detector by nanoplasmonic enhancement[ J]. Advance Materials, 2012, 24(6): 845–849.

    [17] [17] Nakayama K, Tanabe K, Atwater H A. Plasmonic nanoparticle enhanced light absorption in GaAs solar cells[J]. Applied Physics Letters, 2008, 93(12): 121904.

    [18] [18] Pryce I M, Koleske D D, Fischer A J, et al. Plasmonic nanoparticle enhanced photocurrent in GaN/InGaN/GaN quantum well solar cells[J]. Applied Physics Letters, 2010, 96(15): 153501.

    [19] [19] Zhang W, Xu J, Ye W, et al. High-performance AlGaN metal- semiconductor-metal solar-blind ultraviolet photodetectors by localized surface Plasmon enhancement[J]. Applied Physics Letters, 2015, 106(2): 021112.

    [20] [20] Luo L B, Chen J J, Wang M Z, et al. Near-Infrared light photovoltaic detector based on GaAs nanocone array/monolayer graphene schottky junction[J]. Advanced Functional Materials, 2014, 24(19): 2794–2800.

    [21] [21] Qian L X, Wu Z H, Zhang Y Y, et al. Ultrahigh-responsivity, rapid-recovery, solar-blind photodetector based on highly nonstoichiometric amorphous gallium oxide[J]. ACS Photonics, 2017, 4(9): 2203–2211.

    [22] [22] Knight M W, Sobhani H, Nordlander P, et al. Photodetection with active optical antennas[J]. Science, 2011, 332(6030): 702–704.

    [23] [23] Wang F M, Melosh N A. Plasmonic energy collection through hot carrier extraction[J]. Nano Letters, 2011, 11(12): 5426–5430.

    [24] [24] White T P, Catchpole K R. Plasmon-enhanced internal photoemission for photovoltaics: theoretical efficiency limits[J]. Applied Physics Letters, 2012, 101(7): 073905.

    CLP Journals

    [1] Hou Shuang, Liu Qing, Xing Zhiyang, Qian Lingxuan, Liu Xingzhao. Effects of Sn doping on Ga2O3-based solar blind photodetectors[J]. Opto-Electronic Engineering, 2019, 46(10): 190011

    Tools

    Get Citation

    Copy Citation Text

    Shi Xionglin, Liu Hongyu, Hou Shuang, Qian Lingxuan, Liu Xingzhao. The applications of surface plasmons in Ga2O3 ultraviolet photodetector[J]. Opto-Electronic Engineering, 2018, 45(2): 170728

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Article

    Received: Dec. 16, 2017

    Accepted: --

    Published Online: May. 3, 2018

    The Author Email: Xionglin Shi (xlshi@std.uestc.edu.cn)

    DOI:10.12086/oee.2018.170728

    Topics