Chinese Journal of Lasers, Volume. 47, Issue 11, 1104006(2020)
Dynamic Inspection of Wheel Profile Based on ROI-RSICP Algorithm
[2] Feng Q B, Chen S. New method for automatically measuring geometric parameters of wheel sets by laser[J]. Proceedings of SPIE, 5253, 110-113(2003).
[3] Torabi M. Mousavi S G M, Younesian D. A high accuracy imaging and measurement system for wheel diameter inspection of railroad vehicles[J]. IEEE Transactions on Industrial Electronics, 65, 8239-8249(2018).
[8] Chen X M, Sun J H, Liu Z et al. Dynamic tread wear measurement method for train wheels against vibrations[J]. Applied Optics, 54, 5270-5280(2015).
[9] Xing Z Y, Chen Y J, Wang X H et al. Online detection system for wheel-set size of rail vehicle based on 2D laser displacement sensors[J]. Optik, 127, 1695-1702(2016).
[10] Gao Y, Feng Q B, Cui J Y. A simple method for dynamically measuring the diameters of train wheels using a one-dimensional laser displacement transducer[J]. Optics and Lasers in Engineering, 53, 158-163(2014).
[11] Cheng X Q, Chen Y J, Xing Z Y et al. A novel online detection system for wheelset size in railway transportation[J]. Journal of Sensors, 2016, 9507213(2016).
[12] Besl P J. McKay N D. A method for registration of 3-D shapes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14, 239-256(1992).
[15] Du S Y, Zheng N N, Xiong L et al. Scaling iterative closest point algorithm for registration of m-D point sets[J]. Journal of Visual Communication and Image Representation, 21, 442-452(2010).
[18] Yan J M, Fu M H[M]. Vehicle engineering, 37-50(2008).
[19] Yang Y, Liu L, Yi B et al. Dynamic inspection of a rail profile under affine distortion based on the reweighted-scaling iterative closest point method[J]. Measurement Science and Technology, 30, 115202(2019).
[20] Yang Y, Liu L, Li M C et al. Sparse scaling iterative closest point for rail profile inspection[J]. Journal of Computing and Information Science in Engineering, 20, 011003(2019).
[21] Charles R Q, Su H, Mo K C et al. PointNet: deep learning on point sets for 3D classification and segmentation. [C]∥2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 21-26, 2017, Honolulu, HI, USA. New York: IEEE, 77-85(2017).
[23] Sorkine O, Alexa M. As-rigid-as-possible surface modeling. [C]∥Proceedings of the Fifth Eurographics Symposium on Geometry Processing (SGP), July 4-6, 2007, Barcelona, Spain. Demark: ACM, 109-116(2007).
[24] Arun K S, Huang T S, Machine Intelligence. PAMI-, 9, 698-700(1987).
[25] Yang Y, Liu L, Yi B et al. An accurate and fast method to inspect rail wear based on revised global registration[J]. IEEE Access, 6, 57267-57278(2018).
[26] Huttenlocher D P, Klanderman G A, Rucklidge W J. Comparing images using the Hausdorff distance[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15, 850-863(1993).
[27] Alberto G G, Sergio O E, Sergiu O et al. -08-22) [2020-05-29]. https:∥arxiv.org/pdf/1704.06857.pdf.(2017).
Get Citation
Copy Citation Text
Yi Qian, Zhong Haoyu, Liu Long, Liu Wenlong, Yi Bing. Dynamic Inspection of Wheel Profile Based on ROI-RSICP Algorithm[J]. Chinese Journal of Lasers, 2020, 47(11): 1104006
Category: Measurement and metrology
Received: Jun. 4, 2020
Accepted: --
Published Online: Oct. 23, 2020
The Author Email: Bing Yi (bingyi@csu.edu.cn)