Laser & Optoelectronics Progress, Volume. 53, Issue 5, 50003(2016)
Research Progress in Applications of Nanosecond and Femtosecond Laser-Induced Breakdown Spectroscopy
[1] [1] Shi Huan, Zhao Nanjing, Wang Chunlong, et al.. Measurement of trace heavy metal zinc in water by laser induced breakdown spectroscopy[J]. Laser & Optoelectronics Progress, 2012, 49(1): 013003.
[2] [2] Meng Deshuo, Zhao Nanjing, Liu Wenqing, et al.. Quantitative measurement and analysis of potassium in soil using laser-induced breakdown spectroscopy[J]. Chinese J Lasers, 2014, 41(5): 0515003.
[3] [3] Shen Yueliang, Yao Shunchun, Pan Gang, et al.. Influence of binder on laser-induced breakdown spectroscopy measurement of unburned carbon in fly ash[J]. Chinese J Lasers, 2014, 41(3): 0315003.
[4] [4] Li Wenhong, Wu Zhixiang, Wang Ruiwen, et al.. Research on the measurement method of MgO content in cement by laser induced breakdown spectroscopy[J]. Chinese J Lasers, 2014, 41(6): 0615001.
[5] [5] Rehse S J, Mohaidat Q I, Palchaudhuri S, et al.. Towards the clinical application of laser-induced breakdown spectroscopy for rapid pathogen diagnosis: The effect of mixed cultures and sample dilution on bacterial identification[J]. Applied Optics, 2010, 49(13): C27-C35.
[6] [6] Baudelet M, Smith B W. The first years of laser-induced breakdown spectroscopy[J]. Journal of Analytical Atomic Spectrometry, 2013, 28(5): 624-629.
[7] [7] Runge E F, Minck R W, Bryan F R. Spectrochemical analysis using source[J]. Spectrochimica Acta, 1964, 20(4): 733-736.
[8] [8] Hou Guanyu, Wang Ping, Tong Cunzhu. Progress in laser-induced breakdown spectroscopy and its applications[J]. Chinese Optics, 2013, 6(4): 490-500.
[10] [10] Fortes F J, Moros J, Lucena P, et al.. Laser-induced breakdown spectroscopy[J]. Analytical Chemistry, 2013, 85(2): 640-669.
[11] [11] Miziolek A W. Progress in fieldable laser-induced breakdown spectroscopy (LIBS)[C]. SPIE, 2012, 8374: 837402.
[12] [12] Yamamoto K Y, Cremers D A, Ferris M J, et al.. Detection of metals in the environment using a portable laser-induced breakdown spectroscopy instrument[J]. Applied Spectroscopy, 1996, 50(2): 222-233.
[13] [13] Cremers D A, Beddingfield A, Smithwick R, et al.. Monitoring uranium, hydrogen, and lithium and their isotopes using a compact laser-induced breakdown spectroscopy (LIBS) probe and high-resolution spectrometer[J]. Applied Spectroscopy, 2012, 66(3): 250-261.
[14] [14] De Lucia F C, Gottfried J L, Munson C A, et al.. Multivariate analysis of standoff laser-induced breakdown spectroscopy spectra for classification of explosive-containing residues[J]. Applied Optics, 2008, 47(31): G112-G121.
[15] [15] Knight A K, Scherbarth N L, Cremers D A, et al.. Characterization of laser-induced breakdown spectroscopy (LIBS) for application to space exploration[J]. Applied Spectroscopy, 2000, 54(3): 331-340.
[16] [16] Gong Y, Choi D, Han Y B, et al.. Remote quantitative analysis of cerium through a shielding window by stand-off laser-induced breakdown spectroscopy[J]. Journal of Nuclear Materials, 2014, 453: 8-15.
[17] [17] Laserna J J, Reyes F R, González R, et al.. Study on the effect of beam propagation through atmospheric turbulence on stand-off nanosecond laser induced breakdown spectroscopy measurements[J]. Optics Express, 2009, 17(12): 10265-10276.
[18] [18] Wu Ding, Hai Ran, Liu Ping,et al.. Preliminary study of identifying trench oil based on laser-induced breakdown spectroscopy[J]. Chinese Science Bulletin, 2014, 59(21): 2071-2076.
[19] [19] Spizzichino V, Fantoni R. Laser induced breakdown spectroscopy in archeometry: A review of its application and future perspectives[J]. Spectrochimica Acta Part B, 2014, 99(9): 201-209.
[20] [20] Guirado S, Fortes F J, Lazic V, et al.. Chemical analysis of archeological materials in submarine environments using laser-induced breakdown spectroscopy on-site trials in the Mediterranean Sea[J]. Spectrochimica Acta Part B, 2012, 74-75: 137-143.
[21] [21] Rehse S J, Salimnia H, Miziolek A W, et al.. Laser-induced breakdown spectroscopy (LIBS): An overview of recent progress and future potential for biomedical applications[J]. Journal of Medical Engineering & Technology, 2012, 36(2): 77-89.
[22] [22] Kanawade R, Mahari F, Klampfl F, et al.. Qualitative tissue differentiation by analyzing the intensity ratios of atomic emission lines using laser induced breakdown spectroscopy (LIBS): Prospects for a feedback mechanism for surgical laser systems[J]. Journal of Biophotonics, 2015, 8(1-2): 153-161.
[23] [23] Xu Qinying, Zhang Yongbin, Wang Huaisheng, et al.. Detection of trace impurities in uranium using laser induced breakdown spectroscopy[J]. Chinese J Lasers, 2015, 42(3): 0315002.
[24] [24] Wiens R C, Maurice S, Barraclough B, et al.. The Chem Caminstrument suite on the Mars Science Laboratory (MSL) rover: Body unit and combined system tests[J]. Space Science Reviews, 2012, 170(1): 167-227.
[25] [25] Kula A, Posuszny R W, Pasion K, et al.. Application of laser induced breakdown spectroscopy to examination ofwriting inks for forensic purposes[J]. Science and Justice, 2014, 54(2): 118-125.
[26] [26] Martin M Z, Labbé N, André N, et al.. High resolution applications of laser-induced breakdown spectroscopy for environmental and forensic applications[J]. Spectrochimica Acta Part B, 2007, 62(12): 1426-1432.
[27] [27] Mao X L, Bolshakov A A, Perry D L, et al.. Laser ablation molecular isotopic spectrometry: Parameter influence on boron isotope measurements[J]. Spectrochimica Acta Part B, 2011, 66(8): 604-609.
[28] [28] Mao X L, Bolshakov A A, Perry D L, et al.. Laser ablation molecular isotopic spectrometry: Strontium and its isotopes[J]. Spectrochimica Acta Part B, 2011, 66(11-12): 767-775.
[29] [29] Eland K L, Stratis D N, Gild D M, et al.. Energy dependence of emission intensity and temperature in a LIBS plasma using femtosecond excitation[J]. Applied Spectroscopy, 2001, 55(55): 286-291.
[30] [30] Stratis D N, Lai T, Berg M A. Some comparisons of LIBS measurements using nanosecond and picosecond laser pulses[J]. Applied Spectroscopy, 2001, 55(3): 279-285.
[31] [31] Hwang D J, Jeon H, Grigoropoulos C P, et al.. Femtosecond laser ablation induced plasma characteristics from submicron craters in thin metal film[J]. Applied Physics Letters, 2007, 91(25): 251118.
[32] [32] Miziolek A W, Palleschi V, Schechter I. Laser-induced breakdown spectroscopy (LIBS): Fundamentals and applications[M]. Oxford: Cambridge University Press, 2006: 112-113.
[33] [33] Chichkor B N, Momma C, Nolte S, et al.. Femtosecond, picosecond and nanosecond laser ablation of solids[J]. Applied Physics A, 1996, 63(2): 109-115.
[34] [34] Preuss S, Matthias E, Stuke M. Sub-picosecond UV laser ablation of Ni-films: Strong fluence reduction and thickness independent removal[J]. Applied Physics A, 1994, 59(1): 79-82.
[35] [35] Margetic V, Pakulev1 A, Stockhaus A, et al.. A comparison of nanosecond and femtosecond laser-induced plasma spectroscopy of brass samples[J]. Spectrochimica Acta Part B, 2000, 55(11): 1771-1785.
[36] [36] Carvalho G G A D, Moros J, Santos D, et al.. Direct determination of the nutrient profile in plant materials by femtosecond laser-induced breakdown spectroscopy[J]. Analytica Chimica Acta, 2015, 876: 26-38.
[37] [37] Xu H L, Daigle J F, Luo Q, et al.. Femtosecond laser-induced nonlinear spectroscopy for remote sensing of methane[J]. Applied Physics B, 2006, 82(4): 655-658.
[38] [38] Golik S S, Bukin O A,Il′in A A, et al.. Determination of detection limits for elements in water by femtosecond laser-induced breakdown spectroscopy[J]. Journal of Applied Spectroscopy, 2012, 79(3): 471-476.
[39] [39] Elhassan A, Giakoumaki A, Anglos D, et al.. Semi quantitative analysis of euro coins via femtosecond LIBS technique[J]. American Institute of Physics, 2009, 1172(1): 81-84.
[40] [40] Banerjee S P, Chen Z, Fedosejevs R. High resolution scanning microanalysis on material surfaces using UV femtosecond laser induced breakdown spectroscopy[J]. Optics and Lasers in Engineering, 2015, 68: 1-6.
[41] [41] Cai Zhilong, Yang Qiusong, Wang Yang. Femtosecond laser-induced breakdown spectral analysis of Cu-Al alloy sputtered thin films[J]. Chinese J Lasers, 2015, 42(6): 0615001.
[42] [42] Markushin Y, Sivakumar P, Connolly D, et al.. Tag-femtosecond laser-induced breakdown spectroscopy for the sensitive detection of cancer antigen 125 in blood plasma[J]. Analytical Bioanalytical Chemistry, 2015, 407(7): 1849-1855.
[43] [43] Baudelet M, Yu J, Bossu M, et al.. Discrimination of microbiological samples using femtosecond laser-induced breakdown spectroscopy[J]. Applied Physics Letters, 2006, 89(16): 163903.
[44] [44] Dikmelik Y, McEnnis C, Spicer J B, et al.. Femtosecond and nanosecond laser-induced breakdown spectroscopy of trinitrotoluene[J]. Optics Express, 2008, 16(8): 5332-5337.
[45] [45] Kotzagianni M, Couris S. Femtosecond laser induced breakdown spectroscopy of air-methane mixtures[J]. Chemical Physics Letters, 2013, 561-562: 36-41.
[46] [46] Hou M, Chan G C, Mao X, et al.. Femtosecond laser ablation molecular isotopic spectrometry for zirconium isotope analysis[J]. Analytical Chemistry, 2015, 87(9): 4788-4796.
[47] [47] Stelmaszczyk K, Rohwetter P, Méjean G, et al.. Long-distance remote laser-induced breakdown spectroscopy using filamentation in air[J]. Applied Physics Letters, 2004, 85(18): 3977-3979.
[48] [48] Couairon A, Mysyrowicz A. Femtosecond filamentation in transparent media[J]. Physics Reports - Review Section of Physics Letters, 2007, 441(2-4): 47-189.
[49] [49] Chin S L. Femtosecond laser filamentation[M]. New York: Springer, 2010.
[50] [50] Chin S L, Wang T J, Marceau C, et al.. Advances in intense femtosecond laser filamentation in air[J]. Laser Physics, 2011, 22(1): 1-53.
[51] [51] Gao Xun, Du Chuang, Li Cheng, et al.. Detection of heavy metal Cr in soil by the femtosecond filament induced breakdown spectroscopy[J]. Acta Physica Sinica, 2014, 63(9): 095203.
[52] [52] Braun A, Korn G, Liu X, et al.. Self-channeling of high-peak-power femtosecond laser pulses in air[J]. Optics Letters, 1995, 20(1): 73-75.
[53] [53] Wste L, Wedekind C, Wille H, et al.. Femtosecond atmospheric lamp[J]. Laser and Optoelektronik, 1997, 29(5): 51-53.
[54] [54] Rodriguez M, Bourayou R, MejeanG, et al.. Kilometer-range nonlinear propagation of femtosecond laser pulses[J]. Physical Review E, 2004, 69: 036607.
[55] [55] Xu H L, Kamali Y, Marceau C, et al.. Simultaneous detection and identification of multigas pollutants using filament-induced nonlinear spectroscopy[J]. Applied Physics Letters, 2007, 90(10): 101106.
[56] [56] Daigle J F, Kamali Y, Roy G, et al.. Remote filament-induced fluorescence spectroscopy from thin clouds of smoke[J]. Applied Physics B, 2008, 93(4): 759-762.
[57] [57] Xu H L, Liu W, Chin S L. Remote time-resolved filament-induced breakdown spectroscopy of biological materials[J]. Optics Letters, 2006, 31(10): 1540-1542.
[58] [58] Daigle J F, Méjean G, Liu W, et al.. Long range trace detection in aqueous aerosol using remote filament-induced breakdown spectroscopy[J]. Applied Physics B, 2007, 87(4): 749-754.
[59] [59] Chin S L, Xu H L, Luo Q, et al.. Filamentation "remote" sensing of chemical and biological agents/pollutants using only one femtosecond laser source[J]. Applied Physics B, 2009, 95(1): 1-12.
[60] [60] Tzortzakis S, Anglos D, Gray D. Ultraviolet laser filaments for remote laser-induced breakdown spectroscopy (LIBS) analysis: Applications in cultural heritage monitoring[J]. Optics Letters, 2006, 31(8): 1139-1141.
[61] [61] Liu W, Xu H L, Méjean G, et al.. Efficient non-gated remote filament-induced breakdown spectroscopy of metallic sample[J]. Spectrochimica Acta Part B, 2007, 62(1): 76-81.
[62] [62] Zeng B, Wang T J, Hosseini S, et al.. Enhanced remote filament-induced breakdown spectroscopy with spatio-temporally chirped pulses[J]. Journal of the Optical Society of America B, 2012, 29(12): 3226-3230.
[63] [63] Wang T J, Xu H L, Daigle F J, et al.. Water vapor concentration measurement in air using filament-induced fluorescence spectroscopy[J]. Optics Letters, 2012, 37(10): 1706-1708.
[64] [64] Yuan S, Wang T J, Lu P F, et al.. Humidity measurement in air using filament-induced nitrogen monohydride fluorescence spectroscopy[J]. Applied Physics Letters, 2014, 104(9): 091113.
[65] [65] Yuan S, Wang T J, Teranishi Y, et al.. Lasing action in water vapor induced by ultra-fast laser filamentation[J]. Applied Physics Letters, 2013, 102(22): 224102.
[66] [66] Li L H, Xu H L, Yang S B, et al.. Sensing combustion intermediates by femtosecond filament excitation[J]. Optics Letters, 2013, 38(8): 1250-1252.
Get Citation
Copy Citation Text
Chen Na, Liu Yaoxiang, Du Shengzhe, Yan Xiaona, Wang Tiejun, Li Ruxin. Research Progress in Applications of Nanosecond and Femtosecond Laser-Induced Breakdown Spectroscopy[J]. Laser & Optoelectronics Progress, 2016, 53(5): 50003
Category: Reviews
Received: Dec. 8, 2015
Accepted: --
Published Online: May. 5, 2016
The Author Email: Chen Na (chen201203na@126.com)