Acta Laser Biology Sinica, Volume. 32, Issue 6, 492(2023)

Evolution, Transmission and Epidemic Status of SARS-CoV-2 Omicron Variant

ZHENG Jiahao1, WANG Qiong2, LIAN Zhonghao3, and HUANG Xun1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    References(71)

    [1] [1] GRALINSKI L E, MENACHERY V D. Return of the coronavirus: 2019-nCoV [J]. Viruses, 2020, 12(2): 135.

    [2] [2] ZHU N, ZHANG D, WANG W, et al. A novel coronavirus from patients with pneumonia in China, 2019 [J]. The New England Jounral of Medicine, 2020, 382(8): 727-733.

    [3] [3] WU J T, LEUNG K, LEUNG G M. Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study [J]. Lancet, 2020, 395(10225): 689-697.

    [4] [4] HUI D S, E I A, MADANI T A, et al. The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health: the latest 2019 novel coronavirus outbreak in Wuhan, China [J]. International Jounral of Infectious Diseases, 2020, 91: 264-266.

    [5] [5] HARRIS E. XBB.1.16 deemed COVID-19 “variant of interest” [J]. Jama, 2023, 329(20): 1731.

    [6] [6] YAMASOBA D, URIU K, PLIANCHAISUK A, et al. Virological characteristics of the SARS-CoV-2 Omicron XBB.1.16 variant [J]. The Lancet, Infectious Diseases, 2023, 23(6): 655-656.

    [7] [7] ABBASI J. What to know about EG.5, the latest SARS-CoV-2 “variant of interest” [J]. Jama, 2023, 330(10): 900-901.

    [8] [8] FUNK T, PHARRIS A, SPITERI G, et al. Characteristics of SARS-CoV-2 variants of concern B.1.1.7, B.1.351 or P.1: data from seven EU/EEA countries, weeks 38/2020 to 10/2021 [J]. Euro Surveillance, 2021, 26(16): 2100348.

    [9] [9] SABINO E C, BUSS L F, CARVALHO M P S, et al. Resurgence of COVID-19 in Manaus, Brazil, despite high seroprevalence [J]. Lancet, 2021, 397(10273): 452-455.

    [10] [10] LI B, DENG A, LI K, et al. Viral infection and transmission in a large, well-traced outbreak caused by the SARS-CoV-2 Delta variant [J]. Nature Communications, 2022, 13(1): 460.

    [11] [11] WANG Q, IKETANI S, LI Z, et al. Alarming antibody evasion properties of rising SARS-CoV-2 BQ and XBB subvariants [J]. Cell, 2023, 186(2): 279-286.e8.

    [12] [12] NCHIOUA R, DIOFANO F, NOETTGER S, et al. Strong attenuation of SARS-CoV-2 Omicron BA.1 and increased replication of the BA.5 subvariant in human cardiomyocytes [J]. Signal Transduction and Targeted Therapy, 2022, 7(1): 395.

    [13] [13] XIA S, WANG L, ZHU Y, et al. Origin, virological features, immune evasion and intervention of SARS-CoV-2 Omicron sublineages [J]. Signal Transduction and Targeted Therapy, 2022, 7(1): 241.

    [14] [14] PASTORIO C, ZECH F, NOETTGER S, et al. Determinants of spike infectivity, processing, and neutralization in SARS-CoV-2 Omicron subvariants BA.1 and BA.2 [J]. Cell Host Microbe, 2022, 30(9): 1255-1268.e5.

    [15] [15] KURHADE C, ZOU J, XIA H, et al. Neutralization of Omicron BA.1, BA.2, and BA.3 SARS-CoV-2 by 3 doses of BNT162b2 vaccine [J]. Nature Communications, 2022, 13(1): 3602.

    [16] [16] ZHOU Y, ZHI H, TENG Y. The outbreak of SARS-CoV-2 Omicron lineages, immune escape, and vaccine effectivity [J]. Jounral of Medical Virology, 2023, 95(1): e28138.

    [17] [17] YAN Q, HOU R, HUANG X, et al. Shared IGHV1-69-encoded neutralizing antibodies contribute to the emergence of L452R substitution in SARS-CoV-2 variants [J]. Emerging Microbes & Infections, 2022, 11(1): 2749-2761.

    [18] [18] ZHANG X, WU S, WU B, et al. SARS-CoV-2 Omicron strain exhibits potent capabilities for immune evasion and viral entrance [J]. Signal Transduction and Targeted Therapy, 2021, 6(1): 430.

    [19] [19] JIAN F, YU Y, SONG W, et al. Further humoral immunity evasion of emerging SARS-CoV-2 BA.4 and BA.5 subvariants [J]. The Lancet, Infectious Diseases, 2022, 22(11): 1535-1537.

    [20] [20] MALLAPATY S. Can China avoid a wave of deaths if it lifts strict zero COVID policy? [J]. Nature, 2022, 612(7939): 203.

    [21] [21] QU P, EVANS J P, FARAONE J N, et al. Enhanced neutralization resistance of SARS-CoV-2 Omicron subvariants BQ.1, BQ.1.1, BA.4.6, BF.7, and BA.2.75.2 [J]. Cell Host Microbe, 2023, 31(1): 9-17.e3.

    [22] [22] CALLAWAY E. Why does the Omicron sub-variant spread faster than the original? [J]. Nature, 2022, 602(7898): 556-557.

    [23] [23] CHAKRABORTY C, BHATTACHARYA M, CHOPRA H, et al. Recently emerged omicron subvariant BF.7 and its R346T mutation in the RBD region reveal increased transmissibility and higher resistance to neutralization antibodies: need to understand more under the current scenario of rising cases in China and fears of driving a new wave of the COVID-19 pandemic [J]. International Journal of Surgery, 2023, 109(4): 1037-1040.

    [24] [24] WANG X, ZHAO X, SONG J, et al. Homologous or heterologous booster of inactivated vaccine reduces SARS-CoV-2 Omicron variant escape from neutralizing antibodies [J]. Emerging Microbes & Infections, 2022, 11(1): 477-481.

    [25] [25] PéREZ-THEN E, LUCAS C, MONTEIRO V S, et al. Neutralizing antibodies against the SARS-CoV-2 Delta and Omicron variants following heterologous CoronaVac plus BNT162b2 booster vaccination [J]. Nature Medicine, 2022, 28(3): 481-485.

    [26] [26] PAJON R, DORIA-ROSE N A, SHEN X, et al. SARS-CoV-2 Omicron variant neutralization after mRNA-1273 booster vaccination [J]. The New England Jounral of Medicine, 2022, 386(11): 1088-1091.

    [27] [27] TAO K, TZOU P L, KOSAKOVSKY POND S L, et al. Susceptibility of SARS-CoV-2 Omicron variants to therapeutic monoclonal antibodies: systematic review and meta-analysis [J]. Microbiology Spectrum, 2022, 10(4): e0092622.

    [28] [28] XUFANG B, XINHUA C, HONGJIE Y. Prediction of the protective efficacy of the second dose booster immunization of the novel coronavirus mRNA vaccine against the Omicron variant strains BA.1, BA.2, BA.5 and BQ.1.1 [J]. Practical Preventive Medicine, 2023, 30(9): 1025-1031.

    [29] [29] AKASH S, ISLAM M R, DHAMA K. Emergence BQ.1 and BQ.1.1 as newly identified omicron subvariants: current scenario and future outlook ― an update [J]. Annals of Medicine and Surgery (2012), 2023, 85(4): 1329-1330.

    [30] [30] MILLER J, HACHMANN N P, COLLIER A Y, et al. Substantial neutralization escape by SARS-CoV-2 Omicron variants BQ.1.1 and XBB.1 [J]. The New England Jounral of Medicine, 2023, 388(7): 662-664.

    [31] [31] ZHU A, WEI P, MAN M, et al. Antigenic characterization of SARS-CoV-2 Omicron subvariants XBB.1.5, BQ.1, BQ.1.1, BF.7 and BA.2.75.2 [J]. Signal Transduction and Targeted Therapy, 2023, 8(1): 125.

    [32] [32] ZHANG Y, KANG X, LIU S, et al. Broad protective RBD heterotrimer vaccines neutralize SARS-CoV-2 including Omicron sub-variants XBB/BQ.1.1/BF.7 [J]. PLoS Pathogens, 2023, 19(9): e1011659.

    [33] [33] VELAVAN T P, NTOUMI F, KREMSNER P G, et al. Emergence and geographic dominance of Omicron subvariants XBB/XBB.1.5 and BF.7: the public health challenges [J]. International Jounral of Infectious Diseases, 2023, 128: 307-309.

    [34] [34] QU P, FARAONE J N, EVANS J P, et al. Enhanced evasion of neutralizing antibody response by Omicron XBB.1.5, CH.1.1, and CA.3.1 variants [J]. Cell Reports, 2023, 42(5): 112443.

    [35] [35] PARUMS D V. Editorial: the XBB.1.5 (‘Kraken’) subvariant of Omicron SARS-CoV-2 and its rapid global spread [J]. Medical Science Monitor, 2023, 29: e939580.

    [36] [36] TAMURA T, ITO J, URIU K, et al. Virological characteristics of the SARS-CoV-2 XBB variant derived from recombination of two Omicron subvariants [J]. Nature Communications, 2023, 14(1): 2800.

    [37] [37] ZHANG J, DONG P, LIU B, et al. Comparison of XBB and BA.5.2: differences in clinical characteristics and disease outcomes [J]. Archivos De Bronconeumologia, 2023, 59(11): 782-784.

    [38] [38] YUE C, SONG W, WANG L, et al. ACE2 binding and antibody evasion in enhanced transmissibility of XBB.1.5 [J]. The Lancet, Infectious Diseases, 2023, 23(3): 278-280.

    [39] [39] FARAONE J N, QU P, ZHENG Y M, et al. Continued evasion of neutralizing antibody response by Omicron XBB.1.16 [J]. Cell Reports, 2023, 42(10): 113193.

    [40] [40] FARAONE J N, QU P, GOODARZI N, et al. Immune evasion and membrane fusion of SARS-CoV-2 XBB subvariants EG.5.1 and XBB.2.3 [J]. Emerging Microbes & Infections, 2023, 12(2): 2270069.

    [41] [41] PARUMS D V. Editorial: a rapid global increase in COVID-19 is due to the emergence of the EG.5 (Eris) subvariant of Omicron SARS-CoV-2 [J]. Medical Science Monitor, 2023, 29: e942244.

    [42] [42] WANG Q, GUO Y, ZHANG R M, et al. Antibody neutralisation of emerging SARS-CoV-2 subvariants: EG.5.1 and XBC.1.6 [J]. The Lancet, Infectious Diseases, 2023, 23(10): e397-e398.

    [43] [43] YIN X, POPA H, STAPON A, et al. Fidelity of ribonucleotide incorporation by the SARS-CoV-2 replication complex [J]. Jounral of Molecular Biology, 2023, 435(5): 167973.

    [44] [44] GUéRIN P, YAHI N, AZZAZ F, et al. Structural dynamics of the SARS-CoV-2 spike protein: a 2-year retrospective analysis of SARS-CoV-2 variants (from Alpha to Omicron) reveals an early divergence between conserved and variable epitopes [J]. Molecules, 2022, 27(12): 3851.

    [45] [45] LI B S, LI Z C, HU Y, et al. Genomic evolution and variation of SARS-CoV-2 in the early phase of COVID-19 pandemic in Guangdong province, China [J]. Current Medical Science, 2021, 41(2): 228-235.

    [46] [46] DUAN L, ZHENG Q, ZHANG H, et al. The SARS-CoV-2 spike glycoprotein biosynthesis, structure, function, and antigenicity: implications for the design of spike-based vaccine immunogens [J]. Frontiers in Immunology, 2020, 11: 576622.

    [47] [47] YANG H, RAO Z. Structural biology of SARS-CoV-2 and implications for therapeutic development [J]. Nature Reviews, Microbiology, 2021, 19(11): 685-700.

    [48] [48] JAIMES J, MILLET J, WHITTAKER G. Proteolytic cleavage of the SARS-CoV-2 spike protein and the role of the novel S1/S2 site [J]. SSRN, 2020: 3581359.

    [49] [49] CHATTERJEE S, BHATTACHARYA M, NAG S, et al. A detailed overview of SARS-CoV-2 Omicron: its sub-variants, mutations and pathophysiology, clinical characteristics, immunological landscape,immune escape, and therapies [J]. Viruses, 2023, 15(1): 167.

    [50] [50] KORBER B, FISCHER W M, GNANAKARAN S, et al. Tracking changes in SARS-CoV-2 spike: evidence that D614G increases infectivity of the COVID-19 virus [J]. Cell, 2020, 182(4): 812-827.e19.

    [51] [51] ZHOU B, THAO T T N, HOFFMANN D, et al. SARS-CoV-2 spike D614G change enhances replication and transmission [J]. Nature, 2021, 592(7852): 122-127.

    [52] [52] GONCALVES CABECINHAS A R, ROLOFF T, STANGE M, et al. SARS-CoV-2 N501Y introductions and transmissions in switzerland from beginning of October 2020 to February 2021-Implementation of Swiss-wide diagnostic screening and whole genome sequencing [J]. Microorganisms, 2021, 9(4): 677.

    [53] [53] TIAN F, TONG B, SUN L, et al. N501Y mutation of spike protein in SARS-CoV-2 strengthens its binding to receptor ACE2 [J]. Elife, 2021, 10: e69091.

    [54] [54] LI L, HAN P, HUANG B, et al. Broader-species receptor binding and structural bases of Omicron SARS-CoV-2 to both mouse and palm-civet ACE2s [J]. Cell Discovery, 2022, 8(1): 65.

    [55] [55] TOURET F, LUCIANI L, BARONTI C, et al. Replicative fitness of a SARS-CoV-2 20I/501Y.V1 variant from lineage B.1.1.7 in human reconstituted bronchial epithelium [J]. mBio, 2021, 12(4): e0085021.

    [56] [56] WANG Q, YE S B, ZHOU Z J, et al. Key mutations on spike protein altering ACE2 receptor utilization and potentially expanding host range of emerging SARS-CoV-2 variants [J]. Jounral of Medical Virology, 2023, 95(1): e28116.

    [57] [57] TIAN D, SUN Y, ZHOU J, et al. The global epidemic of SARS-CoV-2 variants and their mutational immune escape [J]. Jounral of Medical Virology, 2022, 94(3): 847-857.

    [58] [58] LAN J, GE J, YU J, et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor [J]. Nature, 2020, 581(7807): 215-220.

    [59] [59] PASCARELLA S, CICCOZZI M, ZELLA D, et al. SARS-CoV-2 B.1.617 Indian variants: are electrostatic potential changes responsible for a higher transmission rate? [J]. Jounral of Medical Virology, 2021, 93(12): 6551-6556.

    [60] [60] DENG X, GARCIA-KNIGHT M A, KHALID M M, et al. Transmission, infectivity, and neutralization of a spike L452R SARS-CoV-2 variant [J]. Cell, 2021, 184(13): 3426-3437.e8.

    [61] [61] MOTOZONO C, TOYODA M, ZAHRADNIK J, et al. SARS-CoV-2 spike L452R variant evades cellular immunity and increases infectivity [J]. Cell Host Microbe, 2021, 29(7): 1124-1136.e11.

    [62] [62] STARR T N, GREANEY A J, DINGENS A S, et al. Complete map of SARS-CoV-2 RBD mutations that escape the monoclonal antibody LY-CoV555 and its cocktail with LY-CoV016 [J]. Cell Reports Medicine, 2021, 2(4): 100255.

    [63] [63] CAO Y, JIAN F, WANG J, et al. Imprinted SARS-CoV-2 humoral immunity induces convergent Omicron RBD evolution [J]. Nature, 2023, 614(7948): 521-529.

    [64] [64] ARORA P, KEMPF A, NEHLMEIER I, et al. Omicron sublineage BQ.1.1 resistance to monoclonal antibodies [J]. The Lancet, Infectious Diseases, 2023, 23(1): 22-23.

    [65] [65] ITO J, SUZUKI R, URIU K, et al. Convergent evolution of SARS-CoV-2 Omicron subvariants leading to the emergence of BQ.1.1 variant [J]. Nature Communications, 2023, 14(1): 2671.

    [66] [66] LEUNG K, LAU E H Y, WONG C K H, et al. Estimating the transmission dynamics of SARS-CoV-2 Omicron BF.7 in Beijing after adjustment of the zero-COVID policy in November - December 2022 [J]. Nature Medicine, 2023, 29(3): 579-582.

    [67] [67] NAGASAWA N, KIMURA R, AKAGAWA M, et al. Molecular evolutionary analyses of the sike protein gene and spike protein in the SARS-CoV-2 Omicron subvariants [J]. Microorganisms, 2023, 11(9): 2336.

    [68] [68] CALLAWAY E. Coronavirus variant XBB.1.5 rises in the United States: is it a global threat? [J]. Nature, 2023, 613(7943): 222-223.

    [69] [69] GRAHAM F. Daily briefing: is subvariant XBB.1.5 a global threat? [J]. Nature, 2023.

    [70] [70] ZHANG H P, SUN Y L, WANG Y F, et al. Recent developments in the immunopathology of COVID-19 [J]. Allergy, 2023, 78(2): 369-388.

    [71] [71] WANG Q, GUO Y, IKETANI S, et al. Antibody evasion by SARS-CoV-2 Omicron subvariants BA.2.12.1, BA.4 and BA.5 [J]. Nature, 2022, 608(7923): 603-608.

    Tools

    Get Citation

    Copy Citation Text

    ZHENG Jiahao, WANG Qiong, LIAN Zhonghao, HUANG Xun. Evolution, Transmission and Epidemic Status of SARS-CoV-2 Omicron Variant[J]. Acta Laser Biology Sinica, 2023, 32(6): 492

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Nov. 7, 2023

    Accepted: --

    Published Online: Feb. 2, 2024

    The Author Email:

    DOI:10.3969/j.issn.1007-7146.2023.06.002

    Topics