Acta Optica Sinica, Volume. 45, Issue 16, 1610002(2025)

Velocity Estimation‑Based Active Aberration Modulation Moving Target Detection Method

Changchun Jiang1,2,3, Shengjie Liu4,5,6, Mulin Yao1,2,3, Junwei Li7、*, and Hao Xian1,2,3
Author Affiliations
  • 1National Laboratory on Adaptive Optics, Chengdu 610209, Sichuan , China
  • 2Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, Sichuan , China
  • 3University of Chinese Academy of Sciences, Beijing 100049, China
  • 4College of Physics and Electronic Engineering, Hainan Normal University, Haikou 571158, Hainan , China
  • 5Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Hainan Normal University, Haikou 571158, Hainan , China
  • 6Hainan International Joint Research Center for Semiconductor Lasers, Hainan Normal University, Haikou 571158, Hainan , China
  • 7School of Aeronautics and Astronautics, Xihua University, Chengdu 610039, Sichuan , China
  • show less
    Figures & Tables(26)
    Schematic diagram of image frame sequence shift superposition
    Motion vector parameter space of target
    Flowchart of speed iteration estimation method
    Illustration of VAMCM workflow
    Image frames in dataset. (a)(c) Aberration-free frames;
    Direct correlation results of low SNR image frames.
    Results of the first speed iteration estimation. (a) Sampling space; (b) extreme correlation values under each estimation; (c) correlation results of optimal speed estimation
    Results of the second speed iteration estimation. (a) Sampling space; (b) extreme correlation values under each estimation; (c) correlation results of optimal speed estimation
    Comparison between real trajectory and detected trajectory of target. (a) X coordinate of trajectory; (b) Y coordinate of trajectory
    Optimal detection probability and detection sensitivity
    Optimal false alarm rate and mean trajectory absolute error
    Time consumption ratio of each part of method
    Comparison of detection probability. (a) Detection probability; (b) enlarged partial view of Fig. 13(a)
    Comparison of detection sensitivity. (a) Detection sensitivity; (b) enlarged partial view of Fig. 14(a)
    Comparison of false alarm rate. (a) False alarm rate; (b) enlarged partial view of Fig. 15(a)
    Comparison of mean absolute difference of trajectory
    Comparison of time consuming
    Indoor moving target experiment platform. (a) Light path diagram; (b) practicality diagram
    Examples of data for indoor moving target image frame sequence. (a) The 1st frame; (b) the 2nd frame; (c) the 199th frame; (d) the 200th frame
    Out-field moving target experiment platform. (a) Light path diagram; (b) practicality diagram
    Examples of data for out-field moving target image frame sequence. (a) The 1st frame; (b) the 2nd frame; (c) the 99th frame; (d) the 100th frame
    VAMCM detection results from out-field data
    • Table 1. Runtime environment configuration of computer

      View table

      Table 1. Runtime environment configuration of computer

      Configuration itemConfiguration parameter
      Central processing unitIntel Core i9-13900H
      MemoryDDR5 32GB
      Hard-driveSamsung PM9A1 1TB
      Graphics processing unitNVIDIA RTX 4060
    • Table 2. Performance of VAMCM under different estimation quantities

      View table

      Table 2. Performance of VAMCM under different estimation quantities

      Index34567
      Pd /%100100100100100
      Ps /%93.2594.4596.3096.3096.30
      Pf /%11.389.996.896.896.89
      DMADT /(pixel/frame)0.59910.45900.42110.39700.3968
      t /s2.02713.37665.06137.74479.6896
    • Table 3. Main component models of indoor moving target experimental platform

      View table

      Table 3. Main component models of indoor moving target experimental platform

      ComponentModel
      LaserThorlabs CPS635R
      Adaptive optics kit (L1‒L4, mirror)Thorlabs AOK8/M
      SpectroscopeThorlabs BP108
      Integrating sphereLBTEK LBIS-LPS100-3
      Halogen lampLBTEK LBHL2000‒20W
      Deformable mirrorThorlabs DMH40/M-P01
      Imaging lensThorlabs MVL35M1
      sCOMS detectorThorlabs CS2100M-USB
    • Table 4. Performance comparison of various methods in indoor moving target experiments

      View table

      Table 4. Performance comparison of various methods in indoor moving target experiments

      MethodTTTRASTTV-NTLA4DST-BTMDVAMCM
      SNR is 2.4422Pd /%000045.0
      Ps /%000059.4
      Pf /%10010010010040.4
      DMADT /(pixel/frame)1.7062
      SNR is 3.7260Pd /%000073.6
      Ps /%000061.9
      Pf /%10010010010036.8
      DMADT /(pixel/frame)1.1504
      SNR is 4.2294Pd /%000085.2
      Ps /%000089.6
      Pf /%1001001001006.58
      DMADT /(pixel/frame)1.0824
      SNR is 4.8170Pd /%000099.9
      Ps /%000096.2
      Pf /%1001001001004.98
      DMADT /(pixel/frame)1.0320
      SNR is 6.7034Pd /%98.797.80.90100100
      Ps /%49.760.60.4550100
      Pf /%50.250.099.1500
      DMADT /(pixel/frame)1.15351.16711.0271.14041.0031
    Tools

    Get Citation

    Copy Citation Text

    Changchun Jiang, Shengjie Liu, Mulin Yao, Junwei Li, Hao Xian. Velocity Estimation‑Based Active Aberration Modulation Moving Target Detection Method[J]. Acta Optica Sinica, 2025, 45(16): 1610002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Apr. 12, 2025

    Accepted: May. 21, 2025

    Published Online: Aug. 18, 2025

    The Author Email: Junwei Li (ljw@xhu.edu.cn)

    DOI:10.3788/AOS250898

    CSTR:32393.14.AOS250898

    Topics