Laser & Optoelectronics Progress, Volume. 61, Issue 14, 1400003(2024)

Research Progress and Trend of LiDAR Radiation Intensity Correction

Dan Wang, Qiong Ding*, Runyuan Zhang, and Yuwei An
Author Affiliations
  • Department of Surveying and Mapping Engineering, School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
  • show less
    Figures & Tables(7)
    Example of the shape of a waveform emitted and returned
    Intensity of different objects. (a) Panoramic representation of a scanned region; (b)(c) histograms of intensity measured on different objects
    Examples of intensity abnormalities. (a) Abnormal reflection on water surface; (b) abnormal reflection caused by floating smoke; (c) strip stacking differences; (d) striping noise
    • Table 1. Applications of LiDAR intensity

      View table

      Table 1. Applications of LiDAR intensity

      CategoryApplicationReference
      Land cover classificationClassification of urban surfaces610
      Detection and classification of buildings11-12
      Classification of glacier surfaces13
      Supplementing image-based land cover classification14-15
      Data registrationRegistration of point cloud16-18
      Integration of point cloud and images19-21
      Monitoring natural environmentsWetland hydrology22-23
      Identification of different rock and soil layers24
      Lava flows aging25
      Forestry26-32
      Snow cover change detection33
      Estimation of surface moisture34
      Calving activity of tidewater glacier35
      Transportation asset managementDetection of road objects and features36-39
      Extraction of road free space40
      Pavement and tunnel damage detection41-42
      Structural damage detectionAssessment of historic buildings43
      Detection textural damage of structures44
      Detection of bridge surface degradation45
      Detection of wind-induced cladding damage46
    • Table 2. Theoretical correction methods

      View table

      Table 2. Theoretical correction methods

      ReferenceLiDAR systemInfluential factorMethod modelTarget
      1Multispectral airborne LiDARrange(R),angle of incidence(α),and atmospheric attenuation(TIc=IRRminA1cosαBexp(2aR)overlapping scan areas
      31ALSrange(R),automatic gain control(GCIc=IRARrefA+I×B×(C-GC)
      47ALSrange(R),angle of incidence(α),and atmospheric attenuation(TIc=IR2Rref21cosαexp(-2aR)
      51ALSrange(R),angle of incidence(αIc=IR2Rref21cosα
      52TLSrange(R),angle of incidence(αIc=IR2cos(A+Bsinαtanα)white matte paper
      57ALSrange(R),angle of incidence(α),atmospheric attenuation(T),and transmitted energy(EtIc=IR2Rref21cosαEt refEt10-2aRasphalt road
      58ALSrange(R),angle of incidence(α),and atmospheric attenuation(TIc=IR2Rref21cosα10-2aRoverlapping scan areas
      59ALSrange(R),angle of incidence(α),and atmospheric attenuation(TIc=IR2Rref21cosαexp(-aR)asphalt road
    • Table 3. Empirical correction methods

      View table

      Table 3. Empirical correction methods

      ReferenceLiDAR systemImpactor factorMethod modelTarget
      37Mobile LiDARrange(R),angle of incidence(α

      Ic=IF1(Rref)F1(R)F2(αref)F2(α)

      F1:piecewise,F2:liner

      cement road

      cement wall

      53TLSrange(R),angle of incidence(α),and near-distance effect(n(R)Ic=n(R)×A(1-B+Bcosα)R2white paper target
      57ALSrange(RIc=I×AR2+BR+(1-10002A-1000B)
      60TLSrange(R),angle of incidence(α

      Ic=I-F1(R)-F2(α)F2(α)=10logcos(A+Bsinαtanα)

      F1:piecewise

      teflon material
      61-62TLSrange(R),angle of incidence(αIc=IF1(R)F2(cosα)F1 and F2:polynomialspectralon
      63TLSrange(R),angle of incidence(αIc=IF1(R)F2(cosα)F1 and F2:polynomialsand
      64TLSrange(R),angle of incidence(αIc=1805.4-3075.8Rcosα+1473.9-1510.5R+Iminsphere
      65ALSautomatic gain control(GCIc=A+B×I+C×I×GCtrap
    • Table 4. Correction with reference targets

      View table

      Table 4. Correction with reference targets

      ReferenceLiDAR systemImpact factorMethod modelTarget
      56ALSrange(R),angle of incidence(α),atmospheric attenuation(T),and transmitted energy(EtIc=IR2Rref21cosαEt refEt1T2ρ=IcρrefIc refasphalt road,tarps,and sand
      66ALSrange(R),angle of incidence(α),reflectance(ρ),and empirical calibration constant(CcalCcal=ρrefcosαrefRref2ρ=CcalR2cosαasphalt road,stone pavement
      67ALSrange(R),atmospheric attenuation(T),transmitted energy(Et),and reflectance(ρIc=IR2Rref2Et refEtρ=AIc+Btraps
      68TLSrange(R),angle of incidence(αρ=10IIref-ABsand
      69TLSrange(R),angle of incidence(α),and reflectance(ρIc(ρ)=F1(ρref)I(ρ,cosα,R)I(ρref,cosα,R)F1:linespectralon
    Tools

    Get Citation

    Copy Citation Text

    Dan Wang, Qiong Ding, Runyuan Zhang, Yuwei An. Research Progress and Trend of LiDAR Radiation Intensity Correction[J]. Laser & Optoelectronics Progress, 2024, 61(14): 1400003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Reviews

    Received: Jul. 17, 2023

    Accepted: Nov. 21, 2023

    Published Online: Jul. 4, 2024

    The Author Email: Qiong Ding (qding_cn@163.com)

    DOI:10.3788/LOP231735

    CSTR:32186.14.LOP231735

    Topics