Journal of Synthetic Crystals, Volume. 51, Issue 7, 1284(2022)
Research Progress of Single Crystal Growth Methods for Nuclear Radiation Detection
[4] [4] JOHNS P M, NINO J C. Room temperature semiconductor detectors for nuclear security[J]. Journal of Applied Physics, 2019, 126(4): 040902.
[5] [5] RNTGEN W C. On a new kind of rays[J]. Science, 1896, 3(59): 227-231.
[8] [8] MIRZAEI A, HUH J S, KIM S S, et al. Room temperature hard radiation detectors based on solid state compound semiconductors: an overview[J]. Electronic Materials Letters, 2018, 14(3): 261-287.
[9] [9] YU D J, WANG P, CAO F, et al. Two-dimensional halide perovskite as β-ray scintillator for nuclear radiation monitoring[J]. Nature Communications, 2020, 11: 3395.
[10] [10] ZHANG C, LIU X L, CHEN J, et al. Solution and solid-phase growth of bulk halide perovskite single crystals[J]. Chinese Journal of Chemistry, 2021, 39(5): 1353-1363.
[13] [13] ANDRIEVI P, FRAJTAG P, LAMIRAND V P, et al. Kilogram-scale crystallogenesis of halide perovskites for gamma-rays dose rate measurements[J]. Advanced Science, 2021, 8(2): 2001882.
[14] [14] SAIDAMINOV M I, ABDELHADY A L, MURALI B, et al. High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization[J]. Nature Communications, 2015, 6: 7586.
[15] [15] SAIDAMINOV M I, ABDELHADY A L, MACULAN G, et al. Retrograde solubility of formamidinium and methylammonium lead halide perovskites enabling rapid single crystal growth[J]. Chemical Communications, 2015, 51(100): 17658-17661.
[16] [16] LIU X, XU M, HAO Y Y, et al. Solution-grown formamidinium hybrid perovskite (FAPbBr3) single crystals for α-particle and γ-ray detection at room temperature[J]. ACS Applied Materials & Interfaces, 2021, 13(13): 15383-15390.
[17] [17] FENG Y X, PAN L, WEI H T, et al. Low defects density CsPbBr3 single crystals grown by an additive assisted method for gamma-ray detection[J]. Journal of Materials Chemistry C, 2020, 8(33): 11360-11368.
[18] [18] ZHANG H J, WANG F B, LU Y F, et al. High-sensitivity X-ray detectors based on solution-grown caesium lead bromide single crystals[J]. Journal of Materials Chemistry C, 2020, 8(4): 1248-1256.
[19] [19] LI L Q, LIU X, ZHANG H J, et al. Enhanced X-ray sensitivity of MAPbBr3 detector by tailoring the interface-states density[J]. ACS Applied Materials & Interfaces, 2019, 11(7): 7522-7528.
[20] [20] RONG S S, XIAO Y Q, JIANG J X, et al. Strongly enhanced photoluminescence and photoconductivity in erbium-doped MAPbBr3 single crystals[J]. The Journal of Physical Chemistry C, 2020, 124(16): 8992-8998.
[21] [21] CHEN X M, ZHANG F, GE Y, et al. Centimeter-sized Cs4PbBr6 crystals with embedded CsPbBr3 nanocrystals showing superior photoluminescence: nonstoichiometry induced transformation and light-emitting applications[J]. Advanced Functional Materials, 2018, 28(16): 1706567.
[22] [22] LI Y, SHAO W Y, CHEN L, et al. Lead-halide Cs4PbBr6 single crystals for high-sensitivity radiation detection[J]. NPG Asia Materials, 2021, 13: 40.
[23] [23] YAO F, PENG J L, LI R M, et al. Room-temperature liquid diffused separation induced crystallization for high-quality perovskite single crystals[J]. Nature Communications, 2020, 11: 1194.
[24] [24] WEI S Y, TIE S J, SHEN K, et al. High-performance X-ray detector based on liquid diffused separation induced Cs3Bi2I9 single crystal[J]. Advanced Optical Materials, 2021, 9(22): 2101351.
[25] [25] ZHANG J Y, LI A F, LI B H, et al. Top-seed solution-based growth of perovskite Cs3Bi2I9 single crystal for high performance X-ray detection[J]. ACS Photonics, 2022, 9(2): 641-651.
[26] [26] HYUN K, KIM S J, TAISHI T. Effect of cobalt addition to Si-Cr solvent in top-seeded solution growth[J]. Applied Surface Science, 2020, 513: 145798.
[27] [27] ADELL I, PUJOL M C, SOL R M, et al. Single crystal growth, optical absorption and luminescence properties under VUV-UV synchrotron excitation of type Ⅲ Pr3+∶KGd(PO3)4[J]. Scientific Reports, 2020, 10: 6712.
[38] [38] YUAN L Y, NI H H, CHEN J F, et al. Effects of annealing on the optical and scintillation properties of reddish Bi4Ge3O12 single crystals[J]. Ceramics International, 2021, 47(9): 11856-11861.
[39] [39] LUAN L J, ZHANG J W, WANG T, et al. Vanadium doped Cd0.9Mn0.1Te crystal and its optical and electronic properties[J]. Journal of Crystal Growth, 2017, 459: 124-128.
[42] [42] YAMAJI A, KUROSAWA S, YOSHIKAWA A. Crystal growth and luminescence properties of phenanthrene for neutron detection[J]. Journal of Crystal Growth, 2022, 581: 126494.
[43] [43] YAMAJI A, KUROSAWA S, OHASHI Y, et al. Crystal growth and optical properties of organic crystals for neutron scintillators[J]. Plasma and Fusion Research, 2018, 13: 2405011.
[44] [44] YAMATO S, YAMAJI A, KUROSAWA S, et al. Crystal growth and luminescence properties of organic crystal scintillators for α-rays detection[J]. Optical Materials, 2019, 94: 58-63.
[45] [45] YAMAJI A, YAMATO S, KUROSAWA S, et al. Crystal growth and scintillation properties of carbazole for neutron detection[J]. IEEE Transactions on Nuclear Science, 2020, 67(6): 1027-1031.
[54] [54] FRANK-ROTSCH C, DROPKA N, GLACKI A, et al. VGF growth of GaAs utilizing heater-magnet module[J]. Journal of Crystal Growth, 2014, 401: 702-707.
[56] [56] YANG J, LU W, DUAN M L, et al. VGF growth of high quality InAs single crystals with low dislocation density[J]. Journal of Crystal Growth, 2020, 531: 125350.
[58] [58] LU W, XU J, SONG Q S, et al. Spectroscopic properties of Tm∶Bi4Ge3O12 crystals grown by the micro-pulling-down method[J]. Journal of Luminescence, 2021, 238: 118199.
[64] [64] YANG N J, LI H, WANG G, et al. A study of nucleation at initial growth stage of SiC single crystal by physical vapor transport[J]. Journal of Crystal Growth, 2022, 585: 126591.
[65] [65] KIM S K, JUNG E Y, LEE M H. Defect-induced luminescence quenching of 4H-SiC single crystal grown by PVT method through a control of incorporated impurity concentration[J]. Compounds, 2022, 2(1): 68-79.
[66] [66] WANG G D, ZHANG L, WANG Y, et al. Effect of temperature gradient on AlN crystal growth by physical vapor transport method[J]. Crystal Growth & Design, 2019, 19(11): 6736-6742.
[68] [68] SWIERKOWSKI S P, ARMANTROUT G A, WICHNER R. Recent advances with HgI2 X-ray detectors[J]. IEEE Transactions on Nuclear Science, 1974, 21(1): 302-304.
[69] [69] WEI Y C, LIU C Y, MA E, et al. Optical properties of mid-infrared Cr2+∶ZnSe single crystals grown by chemical vapor transporting with NH4Cl[J]. Optical Materials Express, 2021, 11(3): 664.
[70] [70] HE Y H, DAS S, LIU Z F, et al. Controlling the vapor transport crystal growth of Hg3Se2I2 hard radiation detector using organic polymer[J]. Crystal Growth & Design, 2019, 4: 2074-2080.
Get Citation
Copy Citation Text
YANG Yang, LIU Zhirong. Research Progress of Single Crystal Growth Methods for Nuclear Radiation Detection[J]. Journal of Synthetic Crystals, 2022, 51(7): 1284
Category:
Received: Apr. 10, 2022
Accepted: --
Published Online: Aug. 12, 2022
The Author Email:
CSTR:32186.14.