Optics and Precision Engineering, Volume. 32, Issue 5, 678(2024)

Review on precision and agile imaging control technology of optical remote sensing satellites

Youyang QU1,2,3, Xing ZHONG1、*, Lu DAI1, Lindong FAN1,2,3, and Kai XU1
Author Affiliations
  • 1Chang Guang Satellite Technology Co., LTD, Changchun3002, China
  • 2Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun130033, China
  • 3University of Chinese Academy of Sciences, Beijing100049, China
  • show less
    References(79)

    [1] [1] 周拥军, 羌丽, 李元祥. 国外高分辨率对地成像观测系统现状与发展趋势[J]. 飞控与探测, 2021, 4(5): 1-8.ZHOUY J, QIANGL, LIY X. Status and development trends of foreign space-borne high-resolution imaging remote sensing systems[J]. Flight Control & Detection, 2021, 4(5): 1-8.(in Chinese)

    [2] [2] 李峰, 万秋华, 刘萌萌, 等. 低轨光学卫星同轨立体成像姿态规划与控制方法[J]. 光学 精密工程, 2022, 30(14): 1682-1693. doi: 10.37188/OPE.20223014.1682LIF, WANQ H, LIUM M, et al. Attitude planning and control method of low-orbit optical satellite along-track stereoscopic imaging[J]. Optics and Precision Engineering, 2022, 30(14): 1682-1693.(in Chinese). doi: 10.37188/OPE.20223014.1682

    [3] [3] 彭涛, 潘俊, 王密. 敏捷机动成像多条带数据的辐射一致性处理 [J]. 测绘地理信息, 2022, 47(S1): 137-141.PENGT, PANJ, WANGM. Color normalization method for agile multi-strip satellite images[J]. Journal of Geomatics, 2022, 47(S1): 137-141. (in Chinese)

    [4] LU Z Z, SHEN X, LI D et al. Multiple super-agile satellite collaborative mission planning for area target imaging[J]. International Journal of Applied Earth Observation and Geoinformation, 117(2023).

    [5] [5] 范国伟, 常琳, 杨秀彬, 等. 面向新颖成像模式敏捷卫星的联合执行机构控制方法[J]. 自动化学报, 2017, 43(10): 1858-1868.FANG W, CHANGL, YANGX B, et al. Control strategy of hybrid actuator for novel imaging modes of agile satellites[J]. Acta Automatica Sinica, 2017, 43(10): 1858-1868.(in Chinese)

    [6] [6] 潘腾. 高分二号卫星的技术特点[J]. 中国航天, 2015(1): 3-9. doi: JournalArticle/5b3b7318c095d70f0075e273PANT. Technical characteristics of Gaofen-2 satellite[J]. Aerospace China, 2015(1): 3-9.(in Chinese). doi: JournalArticle/5b3b7318c095d70f0075e273

    [7] [7] 徐广德, 武江凯, 苟仲秋, 等. 国外航天器高精度高稳定度高敏捷指向技术综述[J]. 航天器工程, 2017, 26(1): 91-99. doi: 10.3969/j.issn.1673-8748.2017.01.014XUG D, WUJ K, GOUZH Q, et al. High accuracy high stability and high agility pointing technology of spacecraft[J]. Spacecraft Engineering, 2017, 26(1): 91-99.(in Chinese). doi: 10.3969/j.issn.1673-8748.2017.01.014

    [8] QU Y Y, ZHONG X, ZHANG F et al. Robust disturbance observer-based fast maneuver method for attitude control of optical remote sensing satellites[J]. Acta Astronautica, 201, 83-93(2022).

    [9] [9] 徐伟, 朴永杰. 从Pleiades剖析新一代高性能小卫星技术发展[J]. 中国光学, 2013, 6(1): 9-19. doi: 10.3788/co.20130601.0009XUW, PIAOY J. Analysis of new generation high-performance small satellite technology based on the Pleiades[J]. Chinese Optics, 2013, 6(1): 9-19.(in Chinese). doi: 10.3788/co.20130601.0009

    [10] [10] 胡庆雷, 邵小东, 杨昊旸, 等. 航天器多约束姿态规划与控制: 进展与展望[J]. 航空学报, 2022, 43(10): 395-423.HUQ L, SHAOX D, YANGH Y, et al. Spacecraft attitude planning and control under multiple constraints: review and prospects[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(10): 395-423.(in Chinese)

    [11] ZHANG X Y, ZONG Q, DOU L Q et al. Finite-time attitude optimization maneuver control for coupled spacecraft under attitude measurement errors and actuator faults[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 53, 3082-3091(2023).

    [12] ZHAO Q, DUAN G R. Concurrent learning adaptive finite-time control for spacecraft with inertia parameter identification under external disturbance[J]. IEEE Transactions on Aerospace Electronic Systems, 57, 3691-3704(2021).

    [13] ZHANG F, DUAN G R. Manipulator actuated integrated position and attitude stabilization of spacecraft subject to external disturbances[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 52, 6886-6905(2022).

    [14] YANG Z Y, LIU C, YUE X K et al. Non-fragile negative imaginary output feedback control for attitude stabilization of flexible spacecraft[J]. Acta Astronautica, 208, 296-310(2023).

    [15] LIU Z B, ZHU Y K, QIAO J Z. Composite anti-disturbance position and attitude control for spacecrafts with parametric uncertainty and flexible vibration[J]. Chinese Journal of Aeronautics, 35, 242-252(2022).

    [16] [16] 王亚敏. 敏捷卫星灵巧多模式成像设计与研究[D]. 北京: 中国科学院大学, 2017.WANGY M. Design and Research of Smart Multi-Mode Imaging for Agile Satellite[D].Beijing: University of Chinese Academy of Sciences, 2017. (in Chinese)

    [17] ZHAO L, ZHAO K, HAO Y et al. The attitude control algorithm of agile optical satellite oriented to nonparallel-ground-track-imaging[J]. IEEE Access, 7, 164362-164373(2019).

    [18] LI W T, GAO F, ZHANG P et al. Research on multiview stereo mapping based on satellite video images[J]. IEEE Access, 9, 44069-44083(2021).

    [19] [19] 王密, 杨博, 潘俊, 等. 高分辨率光学卫星遥感影像高精度几何处理与应用[M]. 北京: 科学出版社, 2017. doi: 10.1142/9789813222359_0062WANGM, YANGB, PANJ, et al. High Precision Geometric Processing and Application of High Resolution Optical Satellite Remote Sensing Image[M]. Beijing: Science Press, 2017.(in Chinese). doi: 10.1142/9789813222359_0062

    [20] [20] 管志超. 高分辨率线阵推扫卫星姿态精度提升研究 [D]. 武汉, 武汉大学, 2019.GUANZH CH. Research on the Attitude Accuracy Improvement of High Resolution Pushbroom Satellite [D]. Wuhan: Wuhan University, 2019. (in Chinese)

    [21] ATTIA W A, ELTOHAMY F, BAZAN T M. Design of very high resolution satellite telescopes part II: comprehensive performance assessment[J]. IEEE Transactions on Aerospace Electronic Systems, 56, 4049-4055(2020).

    [22] WAHBALLAH W A, ELTOHAMY F, BAZAN T M. Influence of attitude parameters on image quality of very high-resolution satellite telescopes[J]. IEEE Transactions on Aerospace Electronic Systems, 57, 1177-1183(2021).

    [23] [23] 金涛, 李贞, 李婷, 等. 提高光学遥感卫星图像几何精度总体设计分析[J]. 宇航学报, 2013, 34(8): 1159-1165.JINT, LIZ, LIT, et al. System design and analysis for improving geometric accuracy of high-resolution optical remote sensing satellite image[J]. Journal of Astronautics, 2013, 34(8): 1159-1165.(in Chinese)

    [24] [24] 姬琪, 王栋, 闫得杰, 等. 火星环绕器姿轨控制误差对高分相机像质的影响[J]. 光学 精密工程, 2022, 30(2): 185-190. doi: 10.37188/OPE.20223002.0185JIQ, WANGD, YAND J, et al. Influence of attitude and orbit control error of Mars orbiter on image quality of high-resolution camera[J]. Opt. Precision Eng., 2022, 30(2): 185-190.(in Chinese). doi: 10.37188/OPE.20223002.0185

    [25] WAHBALLAH W A, EL-TOHAMY F, BAZAN T M. Impact of remote sensing satellite attitude parameters on image quality[C], 7, 2020(2020).

    [26] HAJIYEV C, CILDEN GULER D. Review on gyroless attitude determination methods for small satellites[J]. Progress in Aerospace Sciences, 90, 54-66(2017).

    [27] BLACK H D. A passive system for determining the attitude of a satellite[J]. AIAA Journal, 2, 1350-1351(1964).

    [28] [28] 李鑫, 邢斯瑞, 易进, 等. 一种矢量信息重构的最优双矢量定姿算法[J]. 导航定位学报, 2022, 10(4): 43-48. doi: 10.3969/j.issn.2095-4999.2022.04.006LIX, XINGS R, YIJ, et al. An optimal TRIAD algorithm based on vector information reconstruction for satellite attitude determination[J]. Journal of Navigation and Positioning, 2022, 10(4): 43-48.(in Chinese). doi: 10.3969/j.issn.2095-4999.2022.04.006

    [29] MARKLEY F L. Optimal attitude matrix from two vector measurements[J]. Journal of Guidance, Control, and Dynamics, 31, 765-768(2008).

    [30] WAHBA G. A least squares estimate of satellite attitude[J]. SIAM Review, 7, 409(1965).

    [31] MORTARI D. Second estimator of the optimal quaternion[J]. Journal of Guidance, Control, and Dynamics, 23, 885-888(2000).

    [32] HAJIYEV C, CILDEN-GULER D. Attitude and gyro bias estimation by SVD-aided EKF[J]. Measurement, 205, 112209(2022).

    [33] WU J, ZHOU Z B, GAO B et al. Fast linear quaternion attitude estimator using vector observations[J]. IEEE Transactions on Automation Science and Engineering, 15, 307-319(2018).

    [34] CARMI A, OSHMAN Y. Fast particle filtering for attitude and angular-rate estimation from vector observations[J]. Journal of Guidance, Control, and Dynamics, 32, 70-78(2009).

    [35] NI S B, ZHANG C. Attitude determination of nano satellite based on gyroscope, Sun sensor and magnetometer[J]. Procedia Engineering, 15, 959-963(2011).

    [36] MARKLEY F L. Attitude error representations for Kalman filtering[J]. Journal of Guidance Control Dynamics, 26, 311-317(2003).

    [37] CHANG L B, HU B Q, LI K L. Iterated multiplicative extended Kalman filter for attitude estimation using vector observations[J]. IEEE Transactions on Aerospace Electronic Systems, 52, 2053-2060(2016).

    [38] [38] 王峰, 牛诗博, 岳程斐, 等. 阿斯图微卫星姿态控制系统设计[J]. 光学 精密工程, 2020, 28(10): 2192-2202. doi: 10.37188/OPE.20202810.2192WANGF, NIUS B, YUEC F, et al. Design of attitude control system for ASRTU microsatellite[J]. Opt. Precision Eng., 2020, 28(10): 2192-2202.(in Chinese). doi: 10.37188/OPE.20202810.2192

    [39] JIAO Y Y, ZHOU H Y, WANG J Q et al. Linearization errorʼs measure and its influence on the accuracy of MEKF based attitude determination method[J]. Aerospace Science and Technology, 16, 61-69(2012).

    [40] SUN X C, MAO X J, PEI C N. High-precision attitude determination using spaceborne gravity gradiometer and gyroscope[J]. Acta Astronautica, 200, 213-225(2022).

    [41] [41] 沈莹, 曲友阳, 范林东, 等. 无陀螺姿态估计方法仿真分析[J]. 导航定位学报, 2022, 10(5): 62-67. doi: 10.3969/j.issn.2095-4999.2022.05.009SHENY, QUY Y, FANL D, et al. Simulation analysis of no-gyro attitude estimation[J]. Journal of Navigation and Positioning, 2022, 10(5): 62-67.(in Chinese). doi: 10.3969/j.issn.2095-4999.2022.05.009

    [42] WEBB C E. Precision attitude determination with an extended Kalman filter to measure ice-sheet elevation[J]. Journal of Guidance Control Dynamics, 40, 2335-2340(2017).

    [43] AINSCOUGH T, ZANETTI R, CHRISTIAN J et al. Q-method extended Kalman filter[J]. Journal of Guidance, Control, and Dynamics, 38, 752-760(2015).

    [44] HAJIYEV C, CILDEN D, SOMOV Y. Gyro-free attitude and rate estimation for a small satellite using SVD and EKF[J]. Aerospace Science and Technology, 55, 324-331(2016).

    [45] GUO L, CAO S Y. Anti-disturbance control theory for systems with multiple disturbances: a survey[J]. ISA Transactions, 53, 846-849(2014).

    [46] CHEN W H, YANG J, GUO L et al. Disturbance-observer-based control and related methods-an overview[J]. IEEE Transactions on Industrial Electronics, 63, 1083-1095(2016).

    [47] HAN J Q. From PID to active disturbance rejection control[J]. IEEE Transactions on Industrial Electronics, 56, 900-906(2009).

    [48] WANG X K, OHNISHI W, KOSEKI T. Frequency response data based disturbance observer design: with application to a nonminimum phase motion stage[J]. ASME Transactions on Mechatronics, 27, 5318-5326(2022).

    [49] ZHU X Y, CHEN J L, ZHU Z H. Adaptive learning observer for spacecraft attitude control with actuator fault[J]. Aerospace Science and Technology, 108, 106389(2021).

    [50] YU X, ZHU Y K, QIAO J Z et al. Antidisturbance controllability analysis and enhanced antidisturbance controller design with application to flexible spacecraft[J]. IEEE Transactions on Aerospace Electronic Systems, 57, 3393-3404(2021).

    [51] LIU C, YUE X K, SHI K K et al[M]. Spacecraft Attitude Control: A Linear Matrix Inequality Approach(2022).

    [52] HU Q, CHEN W, GUO L et al. Adaptive fixed-time attitude tracking control of spacecraft with uncertainty-rejection capability[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 52, 4634-4647(2022).

    [53] ANNASWAMY A M, FRADKOV A L. A historical perspective of adaptive control and learning[J]. Annual Reviews in Control, 52, 18-41(2021).

    [54] ZHAO L, YU J P, YU H S. Adaptive finite-time attitude tracking control for spacecraft with disturbances[J]. IEEE Transactions on Aerospace and Electronic Systems, 54, 1297-1305(2018).

    [55] XU Y Q, HU Q L, SHAO X D. Composite adaptive attitude control for combined spacecraft with inertia uncertainties[J]. Aerospace Science and Technology, 131, 107984(2022).

    [56] SHI M Y, WU B L, WANG D W. Neural-network-based adaptive quantized attitude takeover control of spacecraft by using cellular satellites[J]. Advances in Space Research, 70, 1965-1978(2022).

    [57] SENDI C, AYOUBI M A. Robust fuzzy tracking control of flexible spacecraft via a T-S fuzzy model[J]. IEEE Transactions on Aerospace Electronic Systems, 54, 170-179(2018).

    [58] ZHANG F, MENG D Y, CAI K Q. Safe iterative learning for attitude tracking of rigid bodies under nonconvex constraints[J]. IEEE Transactions on Automation Science and Engineering, 1-13(2024).

    [59] ZHANG F, MENG D Y, LI X F. Chattering-free adaptive iterative learning for attitude tracking control of uncertain spacecraft[J]. Automatica, 151, 110902(2023).

    [60] WANG X, XU B, PAN Y P. Neural network-based sliding mode control for satellite attitude tracking[J]. Advances in Space Research, 71, 3565-3573(2023).

    [61] LYU B L, LIU C, YUE X K. Hybrid nonfragile intermediate observer-based T-S fuzzy attitude control for flexible spacecraft with input saturation[J]. Aerospace Science and Technology, 128(2022).

    [62] ZHANG F, MENG D Y, LI X F. Robust adaptive learning for attitude control of rigid bodies with initial alignment errors[J]. Automatica, 137, 110024(2022).

    [63] SHI X N, ZHOU Z G, ZHOU D. Finite-time attitude trajectory tracking control of rigid spacecraft[J]. IEEE Transactions on Aerospace Electronic Systems, 53, 2913-2923(2017).

    [64] [64] 赛华阳, 徐振邦, 贺帅, 等. 刚性航天器的预定义时间滑模控制[J]. 光学 精密工程, 2021, 29(12): 2891-2901. doi: 10.37188/OPE.20212912.2891SAIH Y, XUZH B, HESH, et al. Predefined-time sliding mode control for rigid spacecraft[J]. Opt. Precision Eng., 2021, 29(12): 2891-2901.(in Chinese). doi: 10.37188/OPE.20212912.2891

    [65] LEE D. Fault-tolerant finite-time controller for attitude tracking of rigid spacecraft using intermediate quaternion[J]. IEEE Transactions on Aerospace and Electronic Systems, 57, 540-553(2021).

    [66] REN J J, TANG S, CHEN T. Adaptive sliding mode control of spacecraft attitude-orbit dynamics on SE(3)[J]. Advances in Space Research, 71, 525-538(2023).

    [67] SHTESSEL Y, EDWARDS C, FRIDMAN L et al[M]. Sliding Mode Control and Observation(2014).

    [68] [68] 刘陆, 丁世宏, 李世华. 高阶滑模控制理论综述[J]. 控制理论与应用, 2022, 39(12): 2193-2201.LIUL, DINGSH H, LISH H. A survey for high-order sliding mode control theory[J]. Control Theory & Applications, 2022, 39(12): 2193-2201.(in Chinese)

    [69] LEVANT A. Higher-order sliding modes, differentiation and output-feedback control[J]. International Journal of Control, 76, 924-941(2003).

    [70] MENG Q K, YANG H, JIANG B. Second-order sliding-mode on SO(3) and fault-tolerant spacecraft attitude control[J]. Automatica, 149, 110814(2023).

    [71] NIXON M E, SHTESSEL Y B. Adaptive sliding mode control of a perturbed satellite in a formation antenna array[J]. IEEE Transactions on Aerospace Electronic Systems, 58, 4595-4614(2022).

    [72] [72] 范国伟, 常琳, 戴路, 等. 敏捷卫星姿态机动的非线性模型预测控制[J]. 光学 精密工程, 2015, 23(8): 2318-2327. doi: 10.3788/ope.20152308.2318FANG W, CHANGL, DAIL, et al. Nonlinear model predictive control of agile satellite attitude maneuver[J]. Opt. Precision Eng., 2015, 23(8): 2318-2327.(in Chinese). doi: 10.3788/ope.20152308.2318

    [73] WU Y H, HAN F, ZHANG S J et al. Attitude agile maneuvering control for spacecraft equipped with hybrid actuators[J]. Journal of Guidance Control Dynamics, 41, 809-812(2018).

    [74] ZHAO Z Z, CRUZ G, BERNSTEIN D S. Adaptive spacecraft attitude control using single-gimbal control moment gyroscopes without singularity avoidance[J]. Journal of Guidance, Control, and Dynamics, 42, 2342-2355(2019).

    [75] GESHNIZJANI R, KORNIENKO A, ZIEGLER T et al. Torque optimal steering of control moment gyroscopes for agile spacecraft[J]. Journal of Guidance, Control, and Dynamics, 44, 629-640(2021).

    [76] DEARING T L, HAUSER J, CHEN X D et al. Efficient trajectory optimization for constrained spacecraft attitude maneuvers[J]. Journal of Guidance Control Dynamics, 45, 638-650(2022).

    [77] CREAMER G, DELAHUNT P, GATES S et al. Attitude determination and control of Clementine during lunar mapping[J]. Journal of Guidance Control Dynamics, 19, 505-511(1996).

    [78] YOU L, DONG Y. Near time-optimal controller based on analytical trajectory planning algorithm for satellite attitude maneuver[J]. Aerospace Science and Technology, 84, 497-509(2019).

    [79] BHATTACHARYA R. Optimal sensor precision for multirate sensing for bounded estimation error[J]. IEEE Transactions on Aerospace Electronic Systems, 58, 844-854(2022).

    Tools

    Get Citation

    Copy Citation Text

    Youyang QU, Xing ZHONG, Lu DAI, Lindong FAN, Kai XU. Review on precision and agile imaging control technology of optical remote sensing satellites[J]. Optics and Precision Engineering, 2024, 32(5): 678

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jul. 25, 2023

    Accepted: --

    Published Online: Apr. 2, 2024

    The Author Email: Xing ZHONG (ciomper@163.com)

    DOI:10.37188/OPE.20243205.0678

    Topics