Chinese Journal of Liquid Crystals and Displays, Volume. 37, Issue 4, 530(2022)

Campus violence action recognition based on lightweight graph convolution network

Qi LI1, Yao-hui DENG2、*, and Jiao WANG2
Author Affiliations
  • 1School of Electrical Information and Artificial Intelligence,Shaanxi University of Science and Technology,Xi’an 710021,China
  • 2School of Electrical and Control Engineering,Shaanxi University of Science and Technology,Xi’an 710021,China
  • show less
    Figures & Tables(12)
    Network framework
    Data fusion of information flow
    Spatio-temporal attention module
    Adaptive graph convolutional module
    Spatio-temporal feature extracting module
    Overall network architecture
    Variation diagram of model training loss and test accuracy
    Six typical action recognition processes
    • Table 1. Six typical action recognition results

      View table
      View in Article

      Table 1. Six typical action recognition results

      动作类别样本个数/个识别准确率/%最大识别速度/fps
      拳打20094.520.6
      脚踢20097.020.6
      倒地20098.520.6
      推搡20095.020.6
      打耳光20094.520.6
      跪地20095.520.6
    • Table 2. Action recognition results of personnel with different body types

      View table
      View in Article

      Table 2. Action recognition results of personnel with different body types

      测试集人员身高/cm体重/kg肩宽/cm

      平均识别

      准确率/%

      1号173764583.5
      2号179674168.7
      3号154463572.4
      4号168593785.6
      5号176804885.0
      6号1631034764.5
    • Table 3. Comparison results of different recognition methods

      View table
      View in Article

      Table 3. Comparison results of different recognition methods

      方法参数量/MB平均识别准确率/%最大识别速度/fps
      Slow Fusion CNN1417.0365.415.5
      VA-CNN1524.0382.89.2
      ST-GCN73.1085.612.7
      Ours(无注意力模块)1.2586.818.7
      Ours(含注意力模块)0.7889.719.3
    • Table 4. Six typical action recognition results

      View table
      View in Article

      Table 4. Six typical action recognition results

      动作类别识别准确率/%
      拳打85.2
      脚踢90.7
      行走92.4
      下蹲88.2
      跳远87.6
      91.5
    Tools

    Get Citation

    Copy Citation Text

    Qi LI, Yao-hui DENG, Jiao WANG. Campus violence action recognition based on lightweight graph convolution network[J]. Chinese Journal of Liquid Crystals and Displays, 2022, 37(4): 530

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Aug. 31, 2021

    Accepted: --

    Published Online: Jun. 20, 2022

    The Author Email: Yao-hui DENG (173743077@qq.com)

    DOI:10.37188/CJLCD.2021-0229

    Topics