Chinese Journal of Lasers, Volume. 50, Issue 5, 0501002(2023)
Preparation of Domestic Ytterbium-Doped Polarization-Maintaining Fiber and Study of Its Laser Properties
[1] Richardson D J, Nilsson J, Clarkson W A. High power fiber lasers: current status and future perspectives[J]. Journal of the Optical Society of America B, 27, B63-B92(2010).
[2] Jauregui C, Limpert J, Tünnermann A. High-power fibre lasers[J]. Nature Photonics, 7, 861-867(2013).
[3] Fomin V, Gapontsev V, Shcherbakov E et al. 100 kW CW fiber laser for industrial applications[C](2014).
[4] Wang Y Y, Gao C, Tang X et al. 30/900 Yb-doped aluminophosphosilicate fiber presenting 6.85-kW laser output pumped with commercial 976-nm laser diodes[J]. Journal of Lightwave Technology, 36, 3396-3402(2018).
[5] Quintino L, Costa A, Miranda R et al. Welding with high power fiber lasers-a preliminary study[J]. Materials & Design, 28, 1231-1237(2007).
[6] Kalisky O. The status of high-power lasers and their applications in the battlefield[J]. Optical Engineering, 49, 091003(2010).
[7] Zervas M N, Codemard C A. High power fiber lasers: a review[J]. IEEE Journal of Selected Topics in Quantum Electronics, 20, 0904123(2014).
[8] Shiner B. The impact of fiber laser technology on the world wide material processing market[C], AF2J.1(2013).
[9] Dawson J W, Messerly M J, Beach R J et al. Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power[J]. Optics Express, 16, 13240-13266(2008).
[10] Wang Y S, Ma Y, Peng W J et al. Realization of 3.6 kW narrow linewidth linear polarization near-single mode fiber laser output based on near-flat top spectrum[J]. Chinese Journal of Lasers, 48, 2316001(2021).
[11] Song J X, Ren S, Wang G J et al. Realization of 4.2 kW near-single mode narrow linewidth laser by domestic tapered fiber[J]. Chinese Journal of Lasers, 49, 0816002(2022).
[12] Ma P F, Song J X, Wang G J et al. High power narrow linewidth fiber laser breaks through 6 kW near single mode output[J]. Chinese Journal of Lasers, 2022, 0916002.
[13] Ma Y, Yan H, Peng W J et al. 9.6 kW common aperture spectral beam combination system based on multi-channel narrow-linewidth fiber lasers[J]. Chinese Journal of Lasers, 43, 0901009(2016).
[14] Qi Y F, Yang Y F, Shen H et al. 2.7 kW CW narrow linewidth Yb-doped all-fiber amplifiers for beam combining application[C], ATu3A.1(2017).
[15] Lin H, Tao R, Li C et al. 3.7 kW monolithic narrow linewidth single mode fiber laser through simultaneously suppressing nonlinear effects and mode instability[J]. Optics Express, 27, 9716-9724(2019).
[16] Shi W, Fang Q, Fan J L et al. High power monolithic linearly polarized narrow linewidth single mode fiber laser at 1064 nm[C](2015).
[17] Wang Y S, Ke W W, Peng W J et al. 3 kW, 0.2 nm narrow linewidth linearly polarized all-fiber laser based on a compact MOPA structure[J]. Laser Physics Letters, 17, 075101(2020).
[18] Xu C J, Yang Y H, Duan W Q et al. Technology of measuring the beat-length of polarization maintain optical fiber based on Sagnac interferometer[J]. Journal of Beijing University of Aeronautics and Astronautics, 36, 753-756(2010).
Get Citation
Copy Citation Text
Shibiao Liao, Tao Luo, Runheng Xiao, Yingbin Xing, Yingbo Chu, Jinggang Peng, Haiqing Li, Jinyan Li, Nengli Dai. Preparation of Domestic Ytterbium-Doped Polarization-Maintaining Fiber and Study of Its Laser Properties[J]. Chinese Journal of Lasers, 2023, 50(5): 0501002
Category: laser devices and laser physics
Received: Apr. 7, 2022
Accepted: Jun. 22, 2022
Published Online: Feb. 28, 2023
The Author Email: Dai Nengli (dainl@mail.hust.edu.cn)