Journal of Quantum Optics, Volume. 30, Issue 2, 20302(2024)
Quantum Steering of Gaussian Biased Entangled States
[1] [1] SCHRDINGER E. Discussion of probability relations between separated systems[J]. Proc Cambridge Philos Soc, 1935, 31(04):555‒563. DOI: 10.1017/S0305004100013554.
[2] [2] SCHRDINGER E. Probability relations between separated systems[J]. Proc Cambridge Philos Soc, 1936, 32(3):446‒452. DOI: 10.1017/S0305004100019137.
[3] [3] WISEMAN H M, JONES S J, DOHERTY A C. Steering, entanglement, nonlocality, and the Einstein-Podolsky-Rosen paradox[J]. Phys Rev Lett, 2007, 98(14):140402. DOI: 10.1103/PhysRevLett.98.140402.
[4] [4] MIDGLEY S L W, FERRIS A J, OLSEN M K. Asymmetric Gaussian steering: when Alice and Bob disagree[J]. Phys Rev A, 2010, 81(2):574‒575. DOI: 10.1103/PhysRevA.81.022101.
[5] [5] SUN K, YE X, XU J, et al. Experimental quantification of asymmetric Einstein-Podolsky-Rosen steering[J]. Phys Rev Lett, 2016, 116(16):160404. DOI: 10.1103/PhysRevLett.116.160404.
[6] [6] HNDCHEN V, EBERLE T, STEINLECHNER S, et al. Observation of one- way Einstein-Podolsky-Rosen steering[J]. Nat Photonics, 2012, 6:596‒599. DOI: 10.1038/npho-ton.2012.202.
[7] [7] BRANCIARD C, CAVALCANTI E G, WALBORN S P, et al. One-sided device-independent quantum key distribution: security, feasibility, and the connection with steering[J]. Phys Rev A, 2012, 85:010301. DOI: 10.1103/PhysRevA.85.010301.
[8] [8] WALK N, HOSSEINI S, GENG J, et al. Experimental demonstration of Gaussian protocols for one-sided device-independent quantum key distribution[J]. Optica, 2016, 3(6):634‒642. DOI: 10.1364/OPTICA.3.000634.
[9] [9] GEHRING T, HANDCHEN V, DUHME J, et al. Implementation of continuous-variable quantum key distribution with composable and one-sided-device independent security against coherent attacks[J]. Nat Commun, 2015, 6:8795. DOI: 10.1038/ncomms9795.
[10] [10] XIANG Y, KOGIAS I, ADESSO G, et al. Multipartite Gaussian steering: monogamy constraints and quantum cryptography applications[J]. Phys Rev A, 2017, 95:010101(R). DOI: 10.1103/PhysRevA.95.010101.
[11] [11] REID M D. Signifying quantum benchmarks for qubit teleportation and secure quantum communication using Einstein-Podolsky-Rosen steering inequalities[J]. Phys Rev A, 2014, 88(6):062338. DOI: 10.1103/PhysRevA.88.062338.
[12] [12] HE Q, ROSALES-ZRATE L, ADESSO G, et al. Secure continuous variable teleportation and Einstein-Podolsky-Rosen steering[J]. Phys Rev Lett, 2015, 115(18):180502. DOI: 10.1103/PhysRevLett.115.180502.
[13] [13] CHIU C Y, LAMBERT N, LIAO T, et al. No-cloning of quantum steering[J]. npj Quantum Inf, 2016, 2(1):16020. DOI: 10.1038/npjqi.2016.20.
[14] [14] PIANI M, WATROUS J. Necessary and sufficient quantum information characterization of Einstein-Podolsky-Rosen steering[J]. Phys Rev Lett, 2015, 114(6):060404. DOI: 10.1103/PhysRevLett.114.060404.
[15] [15] SUN K, YE X, XIAO Y, et al. Demonstration of Einstein-Podolsky-Rosen steering with enhanced subchannel discrimination[J]. npj Quantum Inf, 2018, 4:12. DOI: 10.1038/s41534-018-0067-1.
[16] [16] BRAUNSTEIN S L, LOOCK P V. Quantum information with continuous variables[J]. Rev Mod Phys, 2005, 77:513‒577. DOI: 10.1103/RevModPhys.77.513.
[17] [17] WEEDBROOK C, PIRANDOLA S, GARCA-PATRN R, et al. Gaussian quantum information[J]. Rev Mod Phys, 2012, 84(2):621‒669. DOI: 10.1103/RevModPhys.84.621.
[18] [18] HAO S, DENG X, LIU Y, et al. Quantum computation and error correction based on continuous variable cluster states[J]. Chin Phys B, 2021, 30(6):060312. DOI: 10.1088/1674-1056/abeb0a.
[20] [20] ANDERSEN U L, NEERGAARD-NIELSEN J S, LOOCK P V, et al. Hybrid discrete and continuous-variable quantum information[J]. Nature Physics, 2015, 11(9):713‒719. DOI: 10.1038/NPHYS3410.
[21] [21] REN S, WANG Y, SU X. Hybrid quantum key distribution network[J]. Sci China Inf Sci, 2022, 65:200502. DOI: 10.1007/s11432-022-3509-6.
[22] [22] REID M D. Demonstration of the Einstein-Podolsky-Rosen paradox using nondegenerate parametric amplification[J]. Phys Rev A, 1989, 40:913‒923. DOI: 10.1103/PhysRevA.40.913.
[23] [23] KOGIAS I, LEE A R, RAGY S, et al. Quantification of Gaussian quantum steering[J]. Phys Rev Lett, 2015, 114:060403. DOI: 10.1103/PhysRevLett.114.060403.
[24] [24] QIN Z, DENG X, TIAN C, et al. Manipulating the direction of Einstein-Podolsky-Rosen steering[J]. Phys Rev A, 2017, 95:052114. DOI: 10.1103/PhysRevA.95.052114.
[25] [25] DENG X, TIAN C, WANG M, et al. Quantification of quantum steering in a Gaussian Greenberger-Horne-Zeilinger state[J]. Opt Commun, 2018, 421:14‒18. DOI: 10.1016/j.optcom.2018.03.079.
[26] [26] DENG X, XIANG Y, TIAN C, et al. Demonstration of monogamy relations for Einstein-Podolsky-Rosen steering in Gaussian cluster states[J]. Phys Rev Lett, 2017, 118(23):230501. DOI: 10.1103/PhysRevLett.118.230501.
[27] [27] WANG M, XIANG Y, KANG H, et al. Deterministic distribution of multipartite entanglement and steering in a quantum network by separable states[J]. Phys Rev Lett, 2020, 125:260506. DOI: 10.1103/PHYSREVLETT.125.260506.
[28] [28] ZENG L, MA R, WEN H, et al. Deterministic distribution of orbital angular momentum multiplexed continuous-variable entanglement and quantum steering[J]. Photonics Res, 2020, 10:777‒785. DOI: 10.1364/PRJ.442925.
[29] [29] DENG X, LIU Y, WANG M, et al. Sudden death and revival of Gaussian Einstein-Podolsky-Rosen steering in noisy channels[J]. npj Quantum Inf, 2021, 7:65. DOI: 10.1038/s41534-021-00399-x.
[30] [30] LIU Y, ZHENG K, KANG H, et al. Distillation of Gaussian Einstein-Podolsky-Rosen steering with noiseless linear amplification[J]. npj Quantum Inf, 2022, 8:38. DOI: 10.1038/s41534-022-00549-9.
[31] [31] REID M D. Monogamy inequalities for the Einstein-Podolsky-Rosen paradox and quantum steering[J]. Phys Rev A, 88, 2013, 88(6):14298‒14298. DOI: 10.1103/PhysRevA.88.062108.
[32] [32] LAMI L, HIRCHE C, ADESSO G, et al. Schur complement inequalities for covariance materices and monogamy of quantum correlations[J]. Phys Rev Lett, 2016, 117:220502. DOI: 10.1103/PhysRevLett.117.220502.
[33] [33] ZHAI S, ZHANG N, KANG X, et al. Revival and distribution of Einstein-Podolsky-Rosen steering of a four-mode cluster state in noisy channels[J]. J Opt Soc Am B, 2022, 39(10):2779‒2785. DOI: 10.1364/JOSAB.36.002920.
[34] [34] XIANG Y, LIU S, GUO J, et al. Distribution and quantification of remotely generated Wigner negativity[J]. npj Quantum Inf, 2022, 8:21. DOI: 10.1038/s41534-022-00533-3.
[35] [35] LIU S, HAN D, WANG N, et al. Experimental demonstration of remotely creating Wigner negativity via quantum steering[J]. Phys Rev Lett, 2022, 128:200401. DOI: 10.1103/PhysRevLett.128.200401.
[36] [36] REID M D, DRUMMOND P D. Quantum correlations of phase in nondegenerate parametric oscillation[J]. Phys Rev Lett,1988, 60(26):2731‒2733. DOI: 10.1103/PhysRevLett.60.2731.
[37] [37] OU Z Y, PEREIRA S F, KIMBLE H J, et al. Realization of the Einstein-Podolsky-Rosen paradox for continuous variables[J]. Phys Rev Lett, 1992, 68:3663‒3666. DOI: 10.1103/PhysRevLett.68.3663.
[38] [38] LOOCK P. V, BRAUNSTEIN S L. Multipartite entanglement for continuous variables: a quantum teleportation network[J]. Phys Rev Lett, 2000, 84:3482‒3485. DOI: 10.1103/PhysRevLett.84.3482.
[39] [39] BOWEN W P, LAM P K, RALPH T C. Biased EPR entanglement and its application to teleportation[J]. J Mod Opt, 2003, 50(5):801‒813. DOI: 10.1080/09500340308235187.
[40] [40] EBERLE T, HNDCHEN V, DUHME J, et al. Gaussian entanglement for quantum key distribution from a single-mode squeezing source[J]. New J Phys, 2013, 15:053049. DOI: 10.1088/1367-2630/15/5/053049.
[41] [41] WANG Y J, ZHANG W H, LI R X, et al. Generation of -10.7 dB unbiased entangled states of light[J]. Appl Phys Lett, 2021, 118:134001. DOI: 10.1063/5.0041289.
[42] [42] ZHANG W, LI R, WANG Y, et al. Security analysis of continuous variable quantum key distribution based on entangled states with biased correlations[J]. Opt Express, 2021, 29(14):22623‒22635. DOI: 10.1364/OE.426089.
Get Citation
Copy Citation Text
WANG Nan, WANG Mei-hong, SU Xiao-long, MA Rong. Quantum Steering of Gaussian Biased Entangled States[J]. Journal of Quantum Optics, 2024, 30(2): 20302
Category:
Received: Feb. 2, 2023
Accepted: Dec. 26, 2024
Published Online: Dec. 25, 2024
The Author Email: MA Rong (rongma@sxu.edu.cn)