Journal of Synthetic Crystals, Volume. 54, Issue 7, 1265(2025)
X-Ray Radiation Stability of CsPbBr3 Perovskite Quantum Dot Scintillators
[1] CHEN Q S, WU J, OU X Y et al. All-inorganic perovskite nanocrystal scintillators. Nature, 561, 88-93(2018).
[2] YANG Z, YAO J S, XU L M et al. Designer bright and fast CsPbBr3 perovskite nanocrystal scintillators for high-speed X-ray imaging. Nature Communications, 15, 8870(2024).
[3] LI X M, HU X D, LI C K et al. Are inorganic lead halide perovskite nanocrystals promising scintillators?. ACS Energy Letters, 8, 2996-3004(2023).
[4] ZAFFALON M L, COVA F, LIU M M et al. Extreme γ-ray radiation hardness and high scintillation yield in perovskite nanocrystals. Nature Photonics, 16, 860-868(2022).
[5] GANDINI M, VILLA I, BERETTA M et al. Efficient, fast and reabsorption-free perovskite nanocrystal-based sensitized plastic scintillators. Nature Nanotechnology, 15, 462-468(2020).
[6] ZHANG Y H, SUN R J, OU X Y et al. Metal halide perovskite nanosheet for X-ray high-resolution scintillation imaging screens. ACS Nano, 13, 2520-2525(2019).
[7] LÜ Z W, WEI G X, WANG H Q et al. New flexible CsPbBr3-based scintillator for X-ray tomography. Nuclear Science and Techniques, 33, 98(2022).
[8] ZHANG X L, WANG T, ZHA G Q. Fabrication of CsPbBr3 single-crystal film and its X-ray detection performance. Journal of Synthetic Crystals, 50, 1900-1906(2021).
[9] ERROI A, MECCA S, ZAFFALON M L et al. Ultrafast and radiation-hard lead halide perovskite nanocomposite scintillators. ACS Energy Letters, 8, 3883-3894(2023).
[10] DE SIENA M C, KLEPOV V V, STEPANOFF S P et al. Extreme γ-ray radiation tolerance of spectrometer-grade CsPbBr3 perovskite detectors. Advanced Materials, 35, 2303244(2023).
[11] ZHANG H, YANG Z, ZHOU M et al. Reproducible X-ray imaging with a perovskite nanocrystal scintillator embedded in a transparent amorphous network structure. Advanced Materials, 33, 2102529(2021).
[12] YANG L L, ZHANG H, ZHOU M et al. High-stable X-ray imaging from all-inorganic perovskite nanocrystals under a high dose radiation. The Journal of Physical Chemistry Letters, 11, 9203-9209(2020).
[13] MA W B, JIANG T M, YANG Z et al. Highly resolved and robust dynamic X-ray imaging using perovskite glass-ceramic scintillator with reduced light scattering. Advanced Science, 8, 2003728(2021).
[14] WANG C Y, LIN H, ZHANG Z J et al. X-ray excited CsPb(Cl, Br)3 perovskite quantum dots-glass composite with long-lifetime. Journal of the European Ceramic Society, 40, 2234-2238(2020).
[15] XUE M Y, WANG W, ZHOU M et al. Structure stability and optical properties of spatial confined all-inorganic perovskites nanocrystals under gamma-ray irradiation. Journal of Luminescence, 258, 119784(2023).
[16] DONG Q Z, HUANG X Y. Preparation of CsPbBr3-Cs4PbBr6 composite NCs by ligand assisted mechanochemistry method and its luminescence intensity and stability. Journal of Synthetic Crystals, 51, 2104-2111(2022).
[17] ZHANG K S, FAN W X, YAO T L et al. Polymer-surface-mediated mechanochemical reaction for rapid and scalable manufacture of perovskite QD phosphors. Advanced Materials, 36, 2310521(2024).
[18] MA W B, SU Y R, ZHANG Q S et al. Thermally activated delayed fluorescence (TADF) organic molecules for efficient X-ray scintillation and imaging. Nature Materials, 21, 210-216(2022).
[19] WANG Y, YANG Y, WANG P et al. Concentration- and temperature-dependent photoluminescence of CsPbBr3 perovskite quantum dots. Optik, 139, 56-60(2017).
[20] LI C L, ZANG Z G, HAN C et al. Highly compact CsPbBr3 perovskite thin films decorated by ZnO nanoparticles for enhanced random lasing. Nano Energy, 40, 195-202(2017).
[21] AKKERMAN Q A, RAINÒ G, KOVALENKO M V et al. Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals. Nature Materials, 17, 394-405(2018).
[22] HAMADA M M, COSTA F E, SHIMIZU S et al. Radiation damage of CsI(Tl) scintillators: blocking of energy transfer process of vk centers to Tl+ activators. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 486, 330-335(2002).
[23] TREMSIN A S, PEARSON J F, NICHOLS A P et al. X-ray-induced radiation damage in CsI, Gadox, Y2O2S and Y2O3 thin films. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 459, 543-551(2001).
[24] QUARANTA A, GRAMEGNA F, KRAVCHUK V et al. Radiation damage mechanisms in CsI(Tl) studied by ion beam induced luminescence. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 266, 2723-2728(2008).
Get Citation
Copy Citation Text
Zhi YANG, Linyuan GU, Dawei WANG, Xuhui XU, Jizhong SONG. X-Ray Radiation Stability of CsPbBr3 Perovskite Quantum Dot Scintillators[J]. Journal of Synthetic Crystals, 2025, 54(7): 1265
Category:
Received: Apr. 1, 2025
Accepted: --
Published Online: Aug. 28, 2025
The Author Email: Zhi YANG (yanzh029@163.com)