Laser & Optoelectronics Progress, Volume. 52, Issue 3, 30001(2015)
Research Progress of Infrared Supercontinuum Generation in Chalcogenide Glass Fibers
[1] [1] R R Alfano, S L Shapiro. Observation of self-phase modulation and small-scale filaments in crystals and glasses[J]. Physical Review Letters, 1970, 24(11): 592.
[2] [2] Yang Weiqiang, Zhang Bin, Xue Guanghui, et al.. 13 W all fiber mid-infrared supercontinuum source[J]. Chinese J Lasers, 2014, 41(3): 0305001.
[3] [3] J G Daly. Mid-infrared laser applications[C]. Optics, Electro-Optics, and Laser Applications in Science and Engineering, 1991: 94-99.
[4] [4] R W Waynant, I K Ilev, I Gannot. Mid–infrared laser applications in medicine and biology[J]. Philosophical Transactions of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences, 2001, 359(1780): 635-644.
[5] [5] P Werle, F Slemr, K Maurer, et al.. Near-and mid-infrared laser-optical sensors for gas analysis[J]. Optics and Lasers in Engineering, 2002, 37(2): 101-114.
[6] [6] Y Yu, X Gai, T Wang, et al.. Mid-infrared supercontinuum generation in chalcogenides[J]. Optical Materials Express, 2013, 3(8): 1075-1086.
[7] [7] U Willer, M Saraji, A Khorsandi, et al.. Near-and mid-infrared laser monitoring of industrial processes, environment and security applications[J]. Optics and Lasers in Engineering, 2006, 44(7): 699-710.
[8] [8] V Kumar, A George, W Reeves, et al.. Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation[J]. Opt Express, 2002, 10(25): 1520-1525.
[9] [9] D D Hudson, E C Magi, A C Judge, et al.. Highly nonlinear chalcogenide glass micro/nanofiber devices: Design, theory, and octave-spanning spectral generation[J]. Opt Commun, 2012, 285(23): 4660-4669.
[10] [10] S Fujino, K Morinaga. Material dispersion and its compositional parameter of oxide glasses[J]. Journal of Non-Crystalline Solids, 1997, 222: 316-320.
[11] [11] P France, S Carter, M Moore, et al.. Progress in fluoride fibres for optical communications[J]. British Telecom Technology Journal, 1987, 5(2): 28-44.
[12] [12] S R Friberg, P W Smith. Nonlinear optical glasses for ultrafast optical switches[J]. Quantum Electronics, IEEE Journal of, 1987, 23(12): 2089-2094.
[13] [13] E Vogel, M Weber, D Krol. Nonlinear optical phenomena in glass[J]. Physics and Chemistry of Glasses, 1991, 32(6): 231-254.
[14] [14] S Shabahang, G Tao, M P Marquez, et al.. Low threshold supercontinuum generation in highly nonlinear robust stepindex chalcogenide nanotapers[C]. Frontiers in Optics, 2013: FTu5B.2.
[15] [15] D P Wei, T Galstian, I Smolnikov, et al.. Spectral broadening of femtosecond pulses in a single-mode As-S glass fiber [J]. Opt Express, 2005, 13(7): 2439-2443.
[16] [16] M El-Amraoui, G Gadret, J Jules, et al.. Microstructured chalcogenide optical fibers from As2S3 glass: towards new IR broadband sources[J]. Opt Express, 2010, 18(25): 26655-26665.
[17] [17] L Shaw, P Thielen, F Kung, et al.. IR supercontinuum generation in As-Se photonic crystal fiber[C]. Conf Adv Solid State Lasers (ASSL), Seattle, WA, 2005: TuC5.
[18] [18] R R Gattass, L Brandon Shaw, V Nguyen, et al.. All-fiber chalcogenide-based mid-infrared supercontinuum source[J]. Optical Fiber Technology, 2012, 18(5): 345-348.
[19] [19] A Heidt, J Price, C Baskiotis, et al.. Mid-infrared ZBLAN fiber supercontinuum source using picosecond diodepumping at 2 mm[J]. Opt Express, 2013, 21(20): 24281-24287.
[20] [20] A Tuniz, G Brawley, D Moss, et al.. Two-photon absorption effects on Raman gain in single mode As2Se3 chalcogenide glass fiber[J]. Opt Express, 2008, 16(22): 18524-18534.
[21] [21] W Gao, Z Duan, K Asano, et al.. Mid-infrared supercontinuum generation in a four-hole As2S5 chalcogenide microstructured optical fiber[J]. Applied Physics B: Lasers and Optics, 2014, 116(4): 847-853.
[22] [22] U Moller, Y Yu, C R Petersen, et al.. High average power mid-infrared supercontinuum generation in a suspended core chalcogenide fiber[C]. Nonlinear Photonics, 2014: JM5A. 54.
[23] [23] A Marandi, C W Rudy, V G Plotnichenko, et al.. Mid-infrared supercontinuum generation in tapered chalcogenide fiber for producing octave-spanning frequency comb around 3 mm[J]. Opt Express, 2012, 20(22): 24218-24225.
[24] [24] R R Gattass, L Brandon Shaw, V Nguyen, et al.. All-fiber chalcogenide-based mid-infrared supercontinuum source[J]. Optical Fiber Technology, 2012, 18(5): 345-348.
[25] [25] I Savelii, O Mouawad, J Fatome, et al.. Mid-infrared 2000-nm bandwidth supercontinuum generation in suspendedcore microstructured Sulfide and Tellurite optical fibers[J]. Opt Express, 2012, 20(24): 27083-27093.
[26] [26] S Shabahang, M P Marquez, G Tao, et al.. Octave-spanning infrared supercontinuum generation in robust chalcogenide nanotapers using picosecond pulses[J]. Opt Letters, 2012, 37(22): 4639-4641.
[28] [28] Q Zhang, M Li, Q Hao, et al.. Fabrication and characterization of on-chip optical nonlinear chalcogenide nanofiber devices[J]. Opt Lett, 2010, 35(22): 3829-3831.
[29] [29] C Lin, H Tao, X Zheng, et al.. Second-harmonic generation in IR-transparent β -GeS2 crystallized glasses[J]. Opt Lett, 2009, 34(4): 437-439.
[30] [30] G Yang, H Jain, A Ganjoo, et al.. A photo-stable chalcogenide glass[J]. Opt Express, 2008, 16(14): 10565-10571.
[31] [31] G Lenz, J Zimmermann, T Katsufuji, et al.. Large Kerr effect in bulk Se-based chalcogenide glasses[J]. Opt Lett, 2000, 25(4): 254-256.
[32] [32] A Jin, Z Wang, J Hou, et al.. Mid-infrared supercontinuum generation in arsenic trisulfide microstructured optical fibers[C]. SPIE/OSA/IEEE Asia Communications and Photonics, 2011, 8307: 83070V.
[33] [33] Wang Xiaoyan, Li Shuguang, Liu Shuo, et al.. Mid-infrared As2S3 chalcogenide glass broadband normal dispersion photonic crystal fiber with high birefringence and high nonlinearity[J]. Acta Physica Sinica, 2011, 60(6): 367-372.
[34] [34] Xia Lanye, Wen Jianguo, Zhao Chujun, et al.. Mid-infrared supercontinuum generation from microstructured chalcogenide fibers[J]. Laser & Optoelectronics Progress, 2011, 48(4): 67-71.
[35] [35] Yang Peilong, Dai Shixun, Yi Changshen, et al.. Design and performance of mid-IR disp ersion in photonic crystal fiber prepared from a flattened chalcogenide glass[J]. Acta Physica Sinic, 2014, 63(1): 014210.
[36] [36] S Wei, Y Xu, S Dai, et al.. Theoretical studies on mid-infrared amplification in Ho3+-doped chalcogenide glass fibers[J]. Physica B: Condensed Matter, 2013, 416: 64-68.
[37] [37] C Yi, P Zhang, F Chen, et al.. Fabrication and characterization of Ge20Sb15S65 chalcogenide glass for photonic crystal fibers[J]. Applied Physics B, 2014, 116(3): 653-658.
[38] [38] Lü Sheqin, Li Chaoran, Wu Yuehao, et al.. Research progress of micro/nano-optical device based on chalcogenide glass [J]. Laser & Optoelectronics Progress, 2014, 51(5): 050001.
[39] [39] Cao Fengzhen, Zhang Peiqing, Dai Shixun, et al.. Research of high nonlinear chalcogenide photonic crystal fiber[J]. Laser & Optoelectronics Progress, 2013, 50(6): 060003.
[40] [40] J Sanghera, C Florea, L Shaw, et al.. Non-linear properties of chalcogenide glasses and fibers[J]. Journal of Non-Crystalline Solids, 2008, 354(2): 462-467.
[41] [41] J Fatome, C Fortier, T N Nguyen, et al.. Linear and nonlinear characterizations of chalcogenide photonic crystal fibers [J]. Journal of Lightwave Technology, 2009, 27(11): 1707-1715.
[42] [42] M El-Amraoui, J Fatome, J C Jules, et al.. Strong infrared spectral broadening in low-loss As-S chalcogenide suspended core microstructured optical fibers[J]. Opt Express, 2010, 18(5): 4547-4556.
[43] [43] M El-Amraoui, G Gadret, J C Jules, et al.. Microstructured chalcogenide optical fibers from As2S3 glass: towards new IR broadband sources[J]. Opt Express, 2010, 18(25): 26655-26665.
[44] [44] W Gao, M El Amraoui, M Liao, et al.. Mid-infrared supercontinuum generation in a suspended-core As2S3 chalcogenide microstructured optical fiber[J]. Opt Express, 2013, 21(8): 9573-9583.
[45] [45] M Liao, C Chaudhari, G Qin, et al.. Fabrication and characterization of a chalcogenide-tellurite composite microstructure fiber with high nonlinearity[J]. Opt Express, 2009, 17(24): 21608-21614.
[46] [46] D I Yeom, E C Magi, M R E Lamont, et al.. Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires[J]. Opt Letters, 2008, 33(7): 660-662.
[47] [47] A Marandi, C W Rudy, N C Leindecker, et al.. Mid-infrared supercontinuum generation from 2.4 mm to 4.6 mm in tapered chalcogenide fiber[C]. Conference on Lasers and Electro-Optics, 2012: CTh4B.5.
[48] [48] J H V Price, T M Monro, H Ebendorff-Heidepriem, et al.. Non-silica microstructured optical fibers for mid-IR supercontinuum generation from 2 mm~5 mm[C]. SPIE, 2006, 6102: 61020A.
[49] [49] S Roy, P Roy Chaudhuri. Supercontinuum generation in visible to mid-infrared region in square-lattice photonic crystal fiber made from highly nonlinear glasses[J]. Opt Commun, 2009, 282(17): 3448-3455.
[50] [50] J Hu, C R Menyuk, L B Shaw, et al.. Maximizing the bandwidth of supercontinuum generation in As2Se3 chalcogenide fibers[J]. Opt Express, 2010, 18(7): 6722-6739.
[51] [51] R J Weiblen, A Docherty, J Hu, et al.. Calculation of the expected bandwidth for a mid-infrared supercontinuum source based on As2S3 chalcogenide photonic crystal fibers[J]. Opt Express, 2010, 18(25): 26666-26674.
[52] [52] A Jin, Z Wang, J Hou, et al.. Mid-infrared supercontinuum generation in arsenic trisulfide microstructured optical fibers[C]. SPIE, 2011, 8307: 83070V.
[53] [53] W Yuan. 2-10 mm Mid-infrared supercontinuum generation in As2Se3 photonic crystal fiber[C]. Frontiers in Optics, 2013: FTu5B.3.
[54] [54] B Ung, M Skorobogatiy. Chalcogenide microporous fibers for linear and nonlinear applications in the mid-infrared[J]. Opt Express, 2010, 18(8): 8647-8659.
[55] [55] A Ben Salem, R Cherif, M Zghal. Tapered As2S3 chalcogenide photonic crystal fiber for broadband mid-infrared supercontinuum generation[C]. Frontiers in Optics, 2011: FMG6.
Get Citation
Copy Citation Text
Wang Cui, Dai Shixun, Zhang Peiqing, Zhang Bin, Wang Xunsi, Shen Xiang, Hou Jing, Wang Rongping, Tao Guangming. Research Progress of Infrared Supercontinuum Generation in Chalcogenide Glass Fibers[J]. Laser & Optoelectronics Progress, 2015, 52(3): 30001
Category: Reviews
Received: Aug. 18, 2014
Accepted: --
Published Online: Feb. 13, 2015
The Author Email: Wang Cui (1072439302@qq.com)