Chinese Journal of Lasers, Volume. 43, Issue 3, 303002(2016)
Effect of Advancing Direction on Residual Stress Fields of AM50 Mg Alloy Specimens Treated by Double-Sided Laser Shock Peening
[1] [1] S G Irizalp, N Saklakoglu, E Akman, et al.. Pulsed Nd∶YAG laser shock processing effects on mechanical properties of 6061-T6 alloy [J]. Optics & Laser Technology, 2014, 56(1): 273-277.
[2] [2] X C Zhang, Y K Zhang, J Z Lu, et al.. Improvement of fatigue life of Ti-6Al-4V alloy by laser shock peening[J]. Mater Sci Eng A-Struct, 2010, 527(15): 3411-3415.
[4] [4] E D Jones. Ultrafast laser-induced stress waves in solids[J]. Appl Phys Lett, 1971, 18(1): 33-35.
[5] [5] B P Fairand, A H Clauer. Effect of water and paint coatings on the magnitude of laser-generated shocks[J]. Opt Commun, 1976, 18(4): 588-589.
[6] [6] Charles S Montross, Tao Wei, Lin Ye, et al.. Laser shock processing and its effects on microstructure and properties of metal alloys: a review[J]. Int J Fatigue, 2002, 24(10): 1021-1036.
[7] [7] Z W Cao, H Y Xu, S K Zou, et al.. Investigation of surface integrity on TC17 Titanium alloy treated by square-spot laser shock peening [J]. Chin J Aeronaut, 2012, 25(4): 650-656.
[8] [8] C Wang, Z L Lai, W F He, et al.. Effect of multi-impact on high cycle fatigue properties of 1Cr11Ni2W2MoV stainless steel subject to laser shock processing[J]. Chinese J Lasers, 2014, 41(1): 0103001.
[9] [9] A W Warren, Y B Guo, S C Chen. Massive parallel laser shock peening: simulation, analysis, and validation[J]. Int J Fatigue, 2008, 30 (1): 188-197.
[10] [10] N Hfaiedh, P Peyre, H Song, et al.. Finite element analysis of laser shock peening of 2050-T8 aluminum alloy[J]. Int J Fatigue, 2015, 70: 480- 489.
[11] [11] X D Ren, Q B Zhang, S Q Yuan, et al.. A finite element analysis of thermal relaxation of residual stress in laser shock processing NI based alloy GH4169[J]. Mater Des, 2014, 54(2): 708-711.
[12] [12] C Correa, L Ruiz de Lara, M Díaz, et al.. Influence of pulse sequence and edge material effect on fatigue life of Al2024-T351 specimens treated by laser shock processing[J]. Int J Fatigue, 2015, 70: 196-204.
[13] [13] S Bhamare, G Ramakrishanan, S Mannava, et al.. Simulation-based optimization of laser shock peening process for improved bending fatigue life of Ti-6Al-2Sn-4Zr-2Mo alloy[J]. Surf Coat Technol, 2013, 232(10): 464 -474.
[14] [14] S M Charles, W Tao, Y Lin, et al.. Laser shock processing and its effects on microstructure and properties of metal alloys: a review[J]. International J Fatigue, 2002, 24(10): 1021-1036.
[15] [15] Y K Zhang, C L Hu, L Cai, et al.. Mechanism of improvement on fatigue life of metal by laser-excited shock waves[J]. Appl Phys A, 2001, 72(1): 113-116.
[16] [16] R Fabbro, J Fournier, P Ballard, et al.. Physical study of laser produced plasma in confined geometry[J]. Journal of Applied Physics, 1990, 68(2): 775-784.
Get Citation
Copy Citation Text
Wang Changyu, Luo Kaiyu, Lu Jinzhong. Effect of Advancing Direction on Residual Stress Fields of AM50 Mg Alloy Specimens Treated by Double-Sided Laser Shock Peening[J]. Chinese Journal of Lasers, 2016, 43(3): 303002
Category: laser manufacturing
Received: Sep. 2, 2015
Accepted: --
Published Online: Mar. 4, 2016
The Author Email: Changyu Wang (15751010137@163.com)