Chinese Journal of Lasers, Volume. 48, Issue 15, 1501006(2021)
Research Status of Mode-Locked Laser Based on Nonlinear Amplified Loop Mirror and Micro-Nano Fiber
[1] Dzhibladze M I, Ésiashvili Z G, Teplitskiǐ É S et al. Mode locking in a fiber laser[J]. Soviet Journal of Quantum Electronics, 13, 245-247(1983).
[2] Fermann M E, Hofer M, Haberl F et al. Femtosecond fibre laser[J]. Electronics Letters, 26, 1737-1738(1990).
[3] Seise E, Klenke A, Limpert J et al. Coherent addition of fiber-amplified ultrashort laser pulses[J]. Optics Express, 18, 27827-27835(2010).
[4] Keller U, Knox W H, Roskos H. Coupled-cavity resonant passive modelocked (RPM) Ti: sapphire laser[M]. //Harris C B, Ippen E P, Mourou G A, et al. Ultrafast phenomena VII. Springer series in chemical physics, 53, 69-71(1990).
[5] Zhou C, Yang W J, Zhang G X et al. Novel ring cavity for ytterbium-doped mode-locked fiber laser incorporated with both SESAM and grating pair[J]. IEEE Photonics Technology Letters, 21, 3-5(2009).
[6] Tian X L, Tang M, Shum P P et al. High-energy laser pulse with a submegahertz repetition rate from a passively mode-locked fiber laser[J]. Optics Letters, 34, 1432-1434(2009).
[7] Okhotnikov O, Grudinin A, Pessa M. Ultra-fast fibre laser systems based on SESAM technology: new horizons and applications[J]. New Journal of Physics, 6, 177(2004).
[8] Set S Y, Yaguchi H, Tanaka Y et al. Laser mode locking using a saturable absorber incorporating carbon nanotubes[J]. Journal of Lightwave Technology, 22, 51-56(2004).
[9] Bao Q L, Zhang H, Wang Y et al. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers[J]. Advanced Functional Materials, 19, 3077-3083(2009).
[10] Hong S, Lédée F, Park J et al. Mode-locking lasers: mode-locking of all-fiber lasers operating at both anomalous and normal dispersion regimes in the C- and L-bands using thin film of 2D perovskite crystallites[J]. Laser & Photonics Reviews, 12, 1870050(2018).
[11] Woodward R I, Kelleher E J R. 2D saturable absorbers for fibre lasers[J]. Applied Sciences, 5, 1440-1456(2015).
[12] Liu W, Pang L, Han H et al. 70-fs mode-locked erbium-doped fiber laser with topological insulator[J]. Scientific Reports, 6, 19997(2016).
[13] Fermann M E. Passive mode locking by using nonlinear polarization evolution in a polarization-maintaining erbium-doped fiber[J]. Optics Letters, 18, 894-896(1993).
[14] Doran N J, Wood D. Nonlinear-optical loop mirror[J]. Optics Letters, 13, 56-58(1988).
[15] Fermann M E, Haberl F, Hofer M et al. Nonlinear amplifying loop mirror[J]. Optics Letters, 15, 752-754(1990).
[16] Jiang T X, Cui Y F, Lu P et al. All PM fiber laser mode locked with a compact phase biased amplifier loop mirror[J]. IEEE Photonics Technology Letters, 28, 1786-1789(2016).
[17] Deng D C, Zhang H T, Gong Q H et al. Energy scalability of the dissipative soliton in an all-normal-dispersion fiber laser with nonlinear amplifying loop mirror[J]. Optics & Laser Technology, 125, 106010(2020).
[18] Chédot C, Lecaplain C, Idlahcen S et al. Mode-locked ytterbium-doped fiber lasers: new perspectives[J]. Fiber and Integrated Optics, 27, 341-354(2008).
[19] Haus H A. Mode-locking of lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 6, 1173-1185(2000).
[20] Ilday F O, Buckley J, Wise F W. Self-similar evolution of parabolic pulses in a fiber laser[C]. //Nonlinear Guided Waves and Their Applications 2004, March 28-31, 2004, Toronto, Canada, MD8(2004).
[21] Chong A, Renninger W H, Wise F W. Properties of normal-dispersion femtosecond fiber lasers[J]. Journal of the Optical Society of America B, 25, 140-148(2008).
[22] Mollenauer L F, Stolen R H, Gordon J P. Experimental observation of picosecond pulse narrowing and solitons in optical fibers[C]. //Conference on Lasers and Electro-Optics 1981, June 10-12, 1981, Washington, D.C., United States, WF1(1981).
[23] Kafka J D, Hall D W, Baer T. Mode-locked erbium-doped fiber laser with soliton pulse shaping[J]. Optics Letters, 14, 1269-1271(1989).
[24] Agrawal G P. Nonlinear fiber optics[M]. 5th ed(2013).
[25] Nelson L E, Jones D J, Tamura K et al. Ultrashort-pulse fiber ring lasers[J]. Applied Physics B, 65, 277-294(1997).
[26] Wu X, Tang D Y, Zhao L M et al. Effective cavity dispersion shift induced by nonlinearity in a fiber laser[J]. Physical Review A, 80, 013804(2009).
[27] Tamura K, Ippen E P, Haus H A et al. 77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser[J]. Optics Letters, 18, 1080-1082(1993).
[28] Haus H A, Tamura K, Nelson L E et al. Stretched-pulse additive pulse mode-locking in fiber ring lasers: theory and experiment[J]. IEEE Journal of Quantum Electronics, 31, 591-598(1995).
[29] Buckley J R, Wise F W, Ilday F Ö et al. Femtosecond fiber lasers with pulse energies above 10 n[J]. Optics Letters, 30, 1888-1890(2005).
[30] Zhou X Y, Yoshitomi D, Kobayashi Y et al. Generation of 28-fs pulses from a mode-locked ytterbium fiber oscillator[J]. Optics Express, 16, 7055-7059(2008).
[31] Tamura K, Haus H A, Ippen E P. Self-starting additive pulse mode-locked erbium fibre ring laser[J]. Electronics Letters, 28, 2226-2228(1992).
[32] Tamura K, Ippen E P, Haus H A. Pulse dynamics in stretched-pulse fiber lasers[J]. Applied Physics Letters, 67, 158-160(1995).
[33] Anderson D, Desaix M, Karlsson M et al. Wave-breaking-free pulses in nonlinear-optical fibers[J]. Journal of the Optical Society of America B, 10, 1185-1190(1993).
[34] Nie B, Pestov D, Wise F W et al. Generation of 42-fs and 10-nJ pulses from a fiber laser with self-similar evolution in the gain segment[J]. Optics Express, 19, 12074-12080(2011).
[35] Peacock A C, Kruhlak R J, Harvey J D et al. Solitary pulse propagation in high gain optical fiber amplifiers with normal group velocity dispersion[J]. Optics Communications, 206, 171-177(2002).
[36] Soh D B, Nilsson J, Grudinin A B. Efficient femtosecond pulse generation using a parabolic amplifier combined with a pulse compressor II finite gain-bandwidth effect[J]. Journal of the Optical Society of America B, 23, 10-19(2006).
[37] Chong A, Buckley J, Renninger W et al. All-normal-dispersion femtosecond fiber laser[J]. Optics Express, 14, 10095-10100(2006).
[39] Chong A, Renninger W H, Wise F W. All-normal-dispersion femtosecond fiber laser with pulse energy above 20 n[J]. Optics Letters, 32, 2408-2410(2007).
[40] Abdelalim M A, Logvin Y, Khalil D A et al. Steady and oscillating multiple dissipative solitons in normal-dispersion mode-locked Yb-doped fiber laser[J]. Optics Express, 17, 13128-13139(2009).
[41] Zhang L Q, Pan Z Y, Zhuo Z et al. Three multiple-pulse operation states of an all-normal-dispersion dissipative soliton fiber laser[J]. International Journal of Optics, 2014, 1-7(2014).
[42] Chang W, Ankiewicz A, Soto-Crespo J M et al. Dissipative soliton resonances[J]. Physical Review A, 78, 023830(2008).
[43] Wu X, Tang D Y, Zhang H et al. Dissipative soliton resonance in an all-normal-dispersion erbium-doped fiber laser[J]. Optics Express, 17, 5580-5584(2009).
[44] Luo Z C, Cao W J, Lin Z B et al. Pulse dynamics of dissipative soliton resonance with large duration-tuning range in a fiber ring laser[J]. Optics Letters, 37, 4777-4779(2012).
[45] Semaan G, Braham F B, Salhi M et al. Generation of high energy square-wave pulses in all anomalous dispersion Er∶Yb passive mode locked fiber ring laser[J]. Optics Express, 24, 8399-8404(2016).
[46] Gong Q H, Zhang H T, Deng D C et al. Dissipative soliton resonance in an all-polarization maintaining fiber laser with a nonlinear amplifying loop mirror[J]. IEEE Photonics Journal, 12, 1-8(2020).
[47] Krzempek K, Abramski K. Dissipative soliton resonance mode-locked double clad Er∶Yb laser at different values of anomalous dispersion[J]. Optics Express, 24, 22379-22386(2016).
[49] Guo B, Yao Y, Yang Y F et al. Dual-wavelength rectangular pulse erbium-doped fiber laser based on topological insulator saturable absorber[J]. Photonics Research, 3, 94-99(2015).
[51] Li D J, Tang D Y, Zhao L M et al. Mechanism of dissipative-soliton-resonance generation in passively mode-locked all-normal-dispersion fiber lasers[J]. Journal of Lightwave Technology, 33, 3781-3787(2015).
[52] Liu X M. Coexistence of strong and weak pulses in a fiber laser with largely anomalous dispersion[J]. Optics Express, 19, 5874-5887(2011).
[53] Fu W, Wright L G, Sidorenko P et al. Several new directions for ultrafast fiber lasers[J]. Optics Express, 26, 9432-9463(2018).
[54] Pitois S, Finot C, Provost L et al. Generation of localized pulses from incoherent wave in optical fiber lines made of concatenated Mamyshev regenerators[J]. Journal of the Optical Society of America B, 25, 1537-1547(2008).
[55] Liu Z W, Ziegler Z M, Wright L G et al. Megawatt peak power from a Mamyshev oscillator[J]. Optica, 4, 649-654(2017).
[56] Liu W, Liao R Y, Zhao J et al. Femtosecond Mamyshev oscillator with 10-MW-level peak power[J]. Optica, 6, 194-197(2019).
[57] Samartsev I, Bordenyuk A, Gapontsev V. Environmentally stable seed source for high power ultrafast laser[J]. Proceedings of SPIE, 10085, 100850S(2017).
[58] Regelskis K, Želudevičius J, Viskontas K et al. Ytterbium-doped fiber ultrashort pulse generator based on self-phase modulation and alternating spectral filtering[J]. Optics Letters, 40, 5255-5258(2015).
[59] Sidorenko P, Fu W, Wright L G et al. Multi-megawatt, self-seeded Mamyshev oscillator[C]. //Specialty Optical Fibers 2018, Zurich, Switzerland, SoM3H, 4(2018).
[60] Woodward R I, Kelleher E J. Towards ‘smart lasers’: self-optimisation of an ultrafast pulse source using a genetic algorithm[J]. Scientific Reports, 6, 37616(2016).
[61] Pu G Q, Yi L L, Zhang L et al. Intelligent programmable mode-locked fiber laser with a human-like algorithm[J]. Optica, 6, 362-369(2019).
[62] Li C, Ma Y, Gao X et al. 1 GHz repetition rate femtosecond Yb: fiber laser for direct generation of carrier-envelope offset frequency[J]. Applied Optics, 54, 8350-8353(2015).
[63] Martinez A, Yamashita S. Multi-gigahertz repetition rate passively modelocked fiber lasers using carbon nanotubes[J]. Optics Express, 19, 6155-6163(2011).
[64] Wang W L, Lin W, Cheng H H et al. Gain-guided soliton: scaling repetition rate of passively modelocked Yb-doped fiber lasers to 12.5 GHz[J]. Optics Express, 27, 10438-10448(2019).
[65] Avdokhin A V, Popov S V, Taylor J R. Totally fiber integrated, figure-of-eight, femtosecond source at 1065 nm[J]. Optics Express, 11, 265-269(2003).
[66] Szczepanek J, Kardaś T M, Michalska M et al. Simple all-PM-fiber laser mode-locked with a nonlinear loop mirror[J]. Optics Letters, 40, 3500-3503(2015).
[67] Nicholson J W, Ramachandran S, Ghalmi S. A passively-modelocked, Yb-doped, figure-eight, fiber laser utilizing anomalous-dispersion higher-order-mode fiber[J]. Optics Express, 15, 6623-6628(2007).
[70] Aguergaray C, Hawker R, Runge A F J et al. 120 fs, 4.2 nJ pulses from an all-normal-dispersion, polarization-maintaining, fiber laser[J]. Applied Physics Letters, 103, 121111(2013).
[71] Zhou J Q, Gu X J. 50.5 nJ, 750 fs all-fiber all polarization-maintaining fiber laser[C]. // CLEO: Science and Innovations 2015, May 10-15, 2015, San Jose, California, United States, SM3P, 1(2015).
[72] Zhou J Q, Gu X J. 32-nJ 615-fs stable dissipative soliton ring cavity fiber laser with Raman scattering[J]. IEEE Photonics Technology Letters, 28, 453-456(2016).
[73] Kuse N, Jiang J, Lee C C et al. All polarization-maintaining Er fiber-based optical frequency combs with nonlinear amplifying loop mirror[J]. Optics Express, 24, 3095-3102(2016).
[74] Gao G, Zhang H T, Li Y H et al. All-normal-dispersion fiber laser with NALM: power scalability of the single-pulse regime[J]. Laser Physics Letters, 15, 035106(2018).
[75] Yu Y, Teng H, Wang H B et al. Highly-stable mode-locked PM Yb-fiber laser with 10 nJ in 93-fs at 6 MHz using NALM[J]. Optics Express, 26, 10428-10434(2018).
[76] Shi Y H, Cheng Z C, Peng Z G et al. Mode-locked fiber laser with a nonlinear amplifying loop mirror at different repetition rate varying from 100 kHz to 21 MHz[J]. Proceedings of SPIE, 11437, 114370L(2020).
[80] Özgören K, Öktem B, Yilmaz S et al. 83 W, 3.1 MHz, square-shaped, 1 ns-pulsed all-fiber-integrated laser for micromachining[J]. Optics Express, 19, 17647-17652(2011).
[81] Duan L N, Liu X M, Mao D et al. Experimental observation of dissipative soliton resonance in an anomalous-dispersion fiber laser[J]. Optics Express, 20, 265-270(2012).
[82] Liu X M. Pulse evolution without wave breaking in a strongly dissipative-dispersive laser system[J]. Physical Review A, 81, 053819(2010).
[84] Lecaplain C, Grelu P, Soto-Crespo J M et al. Dissipative rogue waves generated by chaotic pulse bunching in a mode-locked laser[J]. Physical Review Letters, 108, 233901(2012).
[87] Chen H J, Tan Y J, Long J G et al. Dynamical diversity of pulsating solitons in a fiber laser[J]. Optics Express, 27, 28507-28522(2019).
[88] Krupa K, Nithyanandan K, Andral U et al. Real-time observation of internal motion within ultrafast dissipative optical soliton molecules[J]. Physical Review Letters, 118, 243901(2017).
[89] Shi H S, Song Y J, Wang C et al. Observation of subfemtosecond fluctuations of the pulse separation in a soliton molecule[J]. Optics Letters, 43, 1623-1626(2018).
[91] Akhmediev N, Soto-Crespo J M, Town G. Pulsating solitons, chaotic solitons, period doubling, and pulse coexistence in mode-locked lasers: complex Ginzburg-Landau equation approach[J]. Physical Review E, 63, 056602(2001).
[92] Soto-Crespo J M, Akhmediev N, Ankiewicz A. Pulsating, creeping, and erupting solitons in dissipative systems[J]. Physical Review Letters, 85, 2937-2940(2000).
[93] Du W X, Li H P, Li J W et al. Vector dynamics of pulsating solitons in an ultrafast fiber laser[J]. Optics Letters, 45, 5024-5027(2020).
[94] Nazari S H, Arabanian A S. Comprehensive study of the transitions between stable mode-locking and soliton explosions in a fiber laser mode-locked with a nonlinear amplifying loop mirror[J]. Journal of the Optical Society of America B, 35, 2633-2641(2018).
[95] Wang X Q, He J Y, Mao B W et al. Real-time observation of dissociation dynamics within a pulsating soliton molecule[J]. Optics Express, 27, 28214-28222(2019).
[96] Du Y, Han M, Shu X. Dark solitons in the exploding pulsation of the bright dissipative soliton in ultrafast fiber lasers[J]. Optics Letters, 45, 666-669(2020).
[97] Liu M, Wei Z W, Li H et al. Visualizing the “invisible” soliton pulsation in an ultrafast laser[J]. Laser & Photonics Reviews, 14, 1900317(2020).
[98] Liu X M, Yao X K, Cui Y D. Real-time observation of the buildup of soliton molecules[J]. Physical Review Letters, 121, 023905(2018).
[99] Du Y, Xu Z, Shu X. Spatio-spectral dynamics of the pulsating dissipative solitons in a normal-dispersion fiber laser[J]. Optics Letters, 43, 3602-3605(2018).
[100] Wei Z W, Liu M, Ming S X et al. Pulsating soliton with chaotic behavior in a fiber laser[J]. Optics Letters, 43, 5965-5968(2018).
[101] Wang X Q, He J Y, Shi H M et al. Real-time observation of multi-soliton asynchronous pulsations in an L-band dissipative soliton fiber laser[J]. Optics Letters, 45, 4782-4785(2020).
[102] Chen J, Zhao X, Li T et al. Generation and observation of ultrafast spectro-temporal dynamics of different pulsating solitons from a fiber laser[J]. Optics Express, 28, 14127-14133(2020).
[103] Runge A F J, Broderick N G R, Erkintalo M. Observation of soliton explosions in a passively mode-locked fiber laser[J]. Optica, 2, 36-39(2015).
[104] Runge A F J, Broderick N G R, Erkintalo M. Dynamics of soliton explosions in passively mode-locked fiber lasers[J]. Journal of the Optical Society of America B, 33, 46-53(2016).
[105] Deng D C, Zhang H T, Zu J Q et al. Buildup dynamics of a pulsating dissipative soliton in an all-normal-dispersion PM Yb-doped fiber laser with a NALM[J]. Optics Letters, 46, 1612-1615(2021).
[106] Tong L M, Gattass R R, Ashcom J B et al. Subwavelength-diameter silica wires for low-loss optical wave guiding[J]. Nature, 426, 816-819(2003).
[107] Brambilla G, Xu F, Horak P et al. Optical fiber nanowires and microwires: fabrication and applications[J]. Advances in Optics and Photonics, 1, 107-161(2009).
[108] Li Y H, Zhao Y Y, Wang L J. Demonstration of almost octave-spanning cascaded four-wave mixing in optical microfibers[J]. Optics Letters, 37, 3441-3443(2012).
[109] Wang L, Xu P, Li Y et al. Femtosecond mode-locked fiber laser at 1 μm via optical microfiber dispersion management[J]. Scientific Reports, 8, 4732(2018).
[110] Li Y H, Wang L Z, Kang Y et al. Microfiber-enabled dissipative soliton fiber laser at 2μm[J]. Optics Letters, 43, 6105-6108(2018).
[111] Zhou J, Li Y H, Ma Y G et al. Broadband noise-like pulse generation at 1 μm via dispersion and nonlinearity management[J]. Optics Letters, 46, 1570-1573(2021).
[112] Li Y H, Kang Y, Guo X et al. Simultaneous generation of ultrabroadband noise-like pulses and intracavity third harmonic at 2 μm[J]. Optics Letters, 45, 1583-1586(2020).
[113] Li Y H, Wang L Z, Li L J et al. Optical microfiber-based ultrafast fiber lasers[J]. Applied Physics B, 125, 192-202(2019).
Get Citation
Copy Citation Text
Haitao Zhang, Decai Deng, Yuhang Li, Jiaqi Zu, Junyu Chen, Mali Gong, Qiang Liu. Research Status of Mode-Locked Laser Based on Nonlinear Amplified Loop Mirror and Micro-Nano Fiber[J]. Chinese Journal of Lasers, 2021, 48(15): 1501006
Category: laser devices and laser physics
Received: Mar. 31, 2021
Accepted: May. 11, 2021
Published Online: Aug. 6, 2021
The Author Email: Haitao Zhang (zhanghaitao@mail.tsinghua.edu.cn), Yuhang Li (liyuhang@tsinghua.edu.cn)