Laser & Optoelectronics Progress, Volume. 61, Issue 14, 1437005(2024)

Multiscale Convolutional Neural Network-Based Lithology Classification Method for Multisource Data Fusion

Song Dai1、*, Ximing Sun2, Jingming Zhang2, Yongshan Zhu2, Bin Wang1, and Dongmei Song1
Author Affiliations
  • 1College of Ocean and Space Information, China University of Petroleum (East China), Qingdao 266580, Shandong , China
  • 2Bureau of Geophysical Prospecting INC., China National Petroleum Corporation, Zhuozhou072750, Hebei , China
  • show less
    Figures & Tables(15)
    Lithologic classification network flow chart of multisource data fusion based on multiscale CNN
    Multiscale CNN feature extraction module
    Convolutional attention feature fusion module
    Schematic diagram of MSCA attention module
    CNN module structure diagram
    Main geological types in the study area. (a) N1t; (b) N1s; (c) E2-3a; (d) N2d; (e) Q1x; (f) Q
    Multisource data preprocessing flow chart
    Visualization of Sichuan basin data. (a) Colour image after sharpening of aerial remote sensing images; (b) grayscale image of DEM data; (c) reference map of geological boundaries; (d) lithology label
    Results of lithology classification in the study area. (a) Color image of aerial remote sensing image; (b) lithology label; (c) KNN classification map; (d) MLC classification map; (e) SVM classification map; (f) RF classification map; (g) aerial remote sensing image classification map; (h) fusion classification map
    • Table 1. Sichuan basin data parameter description table

      View table

      Table 1. Sichuan basin data parameter description table

      LocationSichuan, China
      Aircraft typeCessna-208
      Sensor namePhase IXU-RSRIEGL LMS-Q1560
      Sensor typeRGBDEM
      Image size /(pixel×pixel)5074×3678
      Spatial resolution /m5
      Number of bands31
    • Table 2. Comparison table of results of ablation experiment evaluation

      View table

      Table 2. Comparison table of results of ablation experiment evaluation

      DatasetMultiscale CNNMSCAOOA /%AAA /%KKappa
      Sichuan basin data88.2688.440.8460
      89.7986.870.8658
      92.2290.350.8966
    • Table 3. Comparison of classification performance of different dilation rates

      View table

      Table 3. Comparison of classification performance of different dilation rates

      MethodDilation rateOOA /%AAA /%KKappa
      Singlescale{3,3,3}89.8288.310.8532
      Multiscale large size{2,4,6}90.5688.720.8763
      Propose method{1,3,5}92.2290.350.8966
    • Table 4. Comparison of classification performance of different fusion methods

      View table

      Table 4. Comparison of classification performance of different fusion methods

      MethodFeature sizeOOA /%AAA /%KKappa
      Concatenation1×1×51291.2489.520.8829
      Element-wise add1×1×25692.2290.350.8966
    • Table 5. Comparison table of model complexity and execution time for different modules

      View table

      Table 5. Comparison table of model complexity and execution time for different modules

      DatasetMultiscale CNNMSCAParams /106FLOPs /106Execution time /s
      Sichuan basin data0.9321.201291.16
      0.695.72410.71
      0.9421.231322.70
    • Table 6. Accuracy of lithology classification by different methods in Sichuan basin

      View table

      Table 6. Accuracy of lithology classification by different methods in Sichuan basin

      No.ClassKNNMLCSVMRFPropose(RGB)Propose(RGB+DEM)
      1N1t64.0876.7999.5699.7199.9698.37
      2N1s94.9390.4596.4798.2191.8897.88
      3E2-3a87.0999.4384.6883.6099.7299.87
      4N2d65.8785.0280.6699.0667.4087.25
      5Q1x68.5351.0060.9062.2861.8469.55
      6Q56.2882.0082.6265.5488.1189.19
      OOA /%68.6078.8680.4082.5387.9792.22
      AAA/%72.8080.7884.1584.7384.8290.35
      KKappa0.53160.66170.75370.77890.84020.8966
    Tools

    Get Citation

    Copy Citation Text

    Song Dai, Ximing Sun, Jingming Zhang, Yongshan Zhu, Bin Wang, Dongmei Song. Multiscale Convolutional Neural Network-Based Lithology Classification Method for Multisource Data Fusion[J]. Laser & Optoelectronics Progress, 2024, 61(14): 1437005

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Digital Image Processing

    Received: Nov. 13, 2023

    Accepted: Dec. 26, 2023

    Published Online: Jul. 8, 2024

    The Author Email: Song Dai (b22160011@s.upc.edu.cn)

    DOI:10.3788/LOP232491

    CSTR:32186.14.LOP232491

    Topics