Laser & Optoelectronics Progress, Volume. 54, Issue 2, 20001(2017)
Sensors Based on Metallic Photonic Structures Integrated onto End Facets of Fibers
[1] [1] Zhang X P, Liu H M, Feng S F, et al. Solution-processible fabrication of large-area patterned and unpatterned gold nanostructures[J]. Nanotechnology, 2009, 20(42): 425303.
[2] [2] Liu H M, Zhang X P, Zhai T R, et al. Plasmonic nano-ring arrays through patterning gold nanoparticles into interferograms[J]. Opt Express, 2013, 21(13): 15314-15322.
[3] [3] Zhang X P, Sun B Q, Guo H C, et al. Large-area two-dimensional photonic crystals of metallic nanocylinders based on colloidal gold nanoparticles[J]. Appl Phys Lett, 2007, 90(13): 133114.
[4] [4] Liu N, Guo H C, Fu L W, et al. Three-dimensional photonic metamaterials at optical frequencies[J]. Nature Mater, 2008, 7(1): 31-38.
[5] [5] Lin Y H, Zhang X P, Fang X H, et al. A cross-stacked plasmonic nanowire network for high-contrast femtosecond optical switching[J]. Nanoscale, 2016, 8(3): 1421-1429.
[6] [6] Maier S A. Plasmonics: Fundamentals and applications[M]. New York: Springer, 2007.
[7] [7] Brongersim M L, Shalaev V M. The case for plasmonics[J]. Science, 2010, 328(5977): 440-441.
[8] [8] Garcia F J, Abajo D. Colloquium: Light scattering by particle and hole arrays[J]. Reviews of Modern Physics, 2007, 79(4): 1267-1273.
[9] [9] Schuuer J A. Plasmonics for extreme light concentration and manipulation[J]. Nature Mater, 2010, 9(3): 193-204.
[10] [10] Novotny L, Hulst N V. Antennas for light[J]. Nature Photon, 2011, 5(2): 83-90.
[11] [11] Willets K A, Duyne R R. Localized surface plasmon resonance spectroscopy and sensing[J]. Annu Rev Phys Chem, 2007(58): 267-297.
[12] [12] Li J F, Huang Y F, Ding Y. Shell-isolated nanoparticle-enhanced Raman spectroscopy[J]. Nature, 2010, 464(7287): 392-395.
[13] [13] Gordon R, Sinton D, Kavanagh K L, et al. A new generation of sensors based on extraordinary optical transmission[J]. Accounts Chem Res, 2008, 41(8): 1049-1057.
[14] [14] Mayer K M, Hafiier J H. Localized surface plasmon resonance sensors[J]. Chem Rev, 2011, 111(6): 3828-3857.
[15] [15] Anker J N. Biosensing with plasmonic nanosensors[J]. Nature Mater, 2008, 7(6): 442-453.
[16] [16] Liu Y, Cheng R, Liao L, et al. Plasmon resonance enhanced multicolour photo detection by grapheme[J]. Nature Commun, 2010, 2(1): 579-585.
[17] [17] Gramotnev D K, Bozhevolnyi S I. Plasmonics beyond the diffraction limit[J]. Nature Photon, 2010, 4(2): 83-91.
[18] [18] Ozbay E. Plsmonics: Merging photonics and electronics at nanoscale dimensions[J]. Science, 2006, 311(5758): 189-193.
[19] [19] Wang Wei, Ding Dongfa, Xia Junlei. Interferometric fiber optic sensor light-electronics technology[M]. Beijing: Science Press, 2012.
[20] [20] Zhao Li. Analysis on market status quo of chinese optical fiber sensor industry and its market prospective[J]. Study on Optical Communications, 2012, 40(1): 45-48.
[22] [22] Zhang Jiangtao, Gu Zhengtian. Principle and study progress of fiber optic chemical sensor based on surface plasmon resonance[J]. Laser & Optoelectronics Progress, 2008, 45(10): 24-31.
[25] [25] Kostovski G, Stoddart P R, Mitchell A. The optical fiber tip: An inherently light-coupled microscopic platform for micro- and nanotechnologies[J]. Adv Mater, 2014, 26(23): 3798-3820.
[26] [26] Ricciardi A, Crescitelli A, Vaiano P, et al. Lab-on-fiber technology: A new vision for chemical and biological sensing[J]. Analyst, 2015, 140(24): 8068-8079.
[27] [27] Navarrete M, Herrera N D, Cano A G, et al. Plasmon resonance in the visible region in sensors based on tapered optical fibers[J]. Sens Actuator B: Chem, 2014(190): 881-890.
[28] [28] Chang Y J, Chen Y C, Kuo H L, et al. Nanofiber optic sensor based on the excitation of surface plasmon wave near fiber tip[J]. J Biomed Opt, 2014, 11(1): 014032.
[29] [29] Lin H Y, Huang C H, Cheng G L, et al. Tapered optical fiber sensor based on localized surface plasmon resonance[J]. Opt Express, 2012, 20(19): 21693-21701.
[30] [30] Wieduwilt T, Kirsch K, Dellith J, et al. Optical fiber micro-taper with circular symmetric gold coating for sensor applications based on surface plasmon resonance[J]. Plasmonics, 2013, 8(2): 545-554.
[31] [31] Gordon J D, Lowder T L, Selfridge R H, et al. Optical D-fiber-based volatile organic compound sensor[J]. Appl Optics, 2007, 46(32): 7805-7810.
[32] [32] Fang X, Liao C R, Wang D N. Femtosecond laser fabricated fiber Bragg grating in microfiber for refractive index sensing[J]. Opt Lett, 2010, 35(7): 1007-1009.
[33] [33] Caucheteur C, Guo T, Albert J. Review of plasmonic fiber optic biochemical sensors: Improving the limit of detection[J]. Anal Bioanal Chem, 2015, 407(14): 3883-3897.
[34] [34] Guo T, Liu F, Guan B O, et al. Tilted fiber grating mechanical and biochemical sensors[J]. Opt Laser Tech, 2016, 78: 19-33.
[35] [35] Smythe E J, Dickey M D, Whitesides G M, et al. A technique to transfer metallic nanoscale patterns to small and non-planar surfaces[J]. ACS Nano, 2009, 3(1): 59-66.
[36] [36] Mullen K I, Carron K T. Surface-enhanced Raman spectroscopy with abrasively modified fiber optic probes[J]. Anal Chem, 1991, 63(19): 2196-2199.
[37] [37] Mullen K I, Wang D X, Crane L G, et al. Determination of pH with surface-enhanced Raman fiber optic probes[J]. Anal Chem, 1992, 64(8): 930-936.
[38] [38] Lipomi D J, Martinez R V, Kats M A, et al. Patterning the tips of optical fibers with metallic nanostructures using nanoskiving[J]. Nano Lett, 2011, 11(2): 632-636.
[39] [39] Jia P P, Yang J. A plasmonic optical fiber patterned by template transfer as a high-performance flexible nanoprobe for real-time biosensing[J]. Nanoscale, 2014, 6(15): 8836-8843.
[40] [40] Jia P P, Yang J. Integration of large-area metallic nanohole arrays with multimode optical fibers for surface plasmon resonance sensing[J]. Appl Phys Lett, 2013, 102(24): 243107.
[41] [41] Feng S F, Zhang X P, Wang H, et al. Fiber coupled waveguide grating structures[J]. Appl Phys Lett, 2010, 96(13): 133101.
[42] [42] Feng S F, Sabrina D, Torsten H, et al. A miniaturized sensor consisting of concentric metallic nanorings on the end facet of an optical fiber[J]. Small, 2012, 8(12): 1937-1944.
[43] [43] Nguyen H, Sidiroglou F, Collins S F, et al. A localized surface plasmon resonance-based optical fiber sensor with sub-wavelength apertures[J]. Appl Phys Lett, 2013, 103(19): 193116.
[44] [44] Xie Z W, Feng S F, Wang P J, et al. Demonstration of a 3D radar-like SERS sensor micro- and nanofabricated on an optical fiber[J]. Adv Opt Mater, 2015, 3(9): 1232-1239.
[45] [45] Gissibl T, Thiele S, Herkommer A, et al. Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres[J]. Nature Commun, 2016(7): 11763.
[46] [46] Maier S A, Atwater H A. Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures[J]. J Appl Phys, 2005, 98(1): 011101.
[47] [47] Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics[J]. Nature, 2003, 424(6950): 824-830.
[48] [48] Hibbins A P, Murray W A, Tyler J, et al. Resonant absorption of electromagnetic fields by surface plasmons buried in a multilayered plasmonic nanostructure[J]. Phys Rev B, 2006, 74(7): 073408-1-4.
[49] [49] Berini P. Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of asymmetric structures[J]. Phys Rev B, 2001, 63(12): 125417-1-15.
[50] [50] Berini P. Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures[J]. Phys Rev B, 2000, 61(15): 104846-10503.
[51] [51] Berini P. Long-range surface plasmon polaritons[J]. Adv Opt Photonics, 2009, 1(1): 484-588.
[52] [52] Hutter E, Fendler J H. Exploitation of localized surface plasmon resonance[J]. Adv Mater, 2004, 16(19): 1685-1706.
[53] [53] Luther J M, Jain P K, Ewers T, et al. Localized surface plasmon resonances arising from free carriers in doped quantum dots[J]. Nature Mater, 2011, 10(5): 361-366.
[54] [54] Smith C L, Stenger N, Kristensen A, et al. Gap and channeled plasmons in tapered grooves: A review[J]. Nanoscale, 2015, 7(21): 9355-9386.
[55] [55] Nylander C, Liedberg B, Lind T. Gas detection by means of surface plasmons resonance[J]. Sensors Actuat, 1982, 3: 79-88.
[56] [56] Liedberg B, Nylander C, Lundstrm I. Surface plasmons resonance for gas detection and biosensing[J]. Sensors Actuat, 1983, 4: 299-304.
[57] [57] Homola J, Yee S S, Gauglitz G. Surface plasmon resonance sensors: Review[J]. Sensors Actuat B, 1999, 54(1-2): 3-15.
[58] [58] Homola J. Present and future of surface plasmon resonance biosensors[J]. Anal Bioanal Chem, 2003, 377(3): 528-53.
[59] [59] Zhang Z J, Chen Y Y, Liu H J, et al. On-fiber plasmonic interferometer for multi-parameter sensing[J]. Opt Express, 2015, 23(8): 10732-10741.
[60] [60] He X L, Yi H, Long J, et al. Plasmonic crystal cavity on single-mode optical fiber end facet for label-free biosensing[J]. Appl Phys Lett, 2016, 108(23): 231105.
[61] [61] Ameling R, Langguth L, Hentsche M, et al. Cavity-enhanced localized plasmon resonance sensing[J]. Appl Phys Lett, 2010, 97(25): 253116.
[62] [62] Zhang X P, Ma X M, Dou F, et al. A biosensor based on metallic photonic crystals for the detection of specific bioreactions[J]. Adv Funct Mater, 2011, 21(22): 4219-4227.
[63] [63] Zhan Y H, Lei D Y, Li X F, et al. Plasmonic fano resonances in nanohole quadrumers for ultra-sensitive refractive index sensing[J]. Nanoscale, 2013, 6(9): 4705-4715.
[64] [64] Liu F F, Zhang X P. Fano coupling between Rayleigh anomaly and localized surface plasmon resonance for sensor applications[J]. Biosens & Bioelectronics, 2015, 68: 719-725.
[65] [65] Consales M, Ricciardi A, Crescitelli A, et al. Lab-on-fiber technology: Toward multifunctional optical nanoprobes[J]. ACS Nano, 2012, 6(4): 3163-3170.
[66] [66] Lin Y B, Zou Y, Robert G L. A reflection-based localized surface plasmon resonance fiber-optic probe for biochemical sensing[J]. Biomed Opt Express, 2011, 2(3): 478-484.
[67] [67] Pisco M, Galeotti F, Quero G, et al. Miniaturized sensing probes based on metallic dielectric crystals self-assembled on optical fiber tips[J]. ACS Photon, 2014, 1(10): 917-927.
[68] [68] Micco A, Ricciardi A, Pisco M, et al. Optical fiber tip templating using direct focused ion beam milling[J]. Sci Rep, 2015, 5: 15935
[69] [69] Wang H, Xie Z W, Zhang M L, et al. A miniaturized optical fiber microphone with concentric nanorings grating and microsprings structured diaphragm[J]. Opt Laser Tech, 2016, 78: 110-115.
[70] [70] Liu H M, Zhang X P, Zhai T R, et al. Centimeter-scale-homogeneous SERS substrates with seven-order global enhancement through thermally controlled plasmonic nanostructures[J]. Nanoscale, 2014, 6(10): 5099-5105.
[71] [71] Chu Y Z, Mohamad G B, Kenneth B C. Double-resonance plasmon substrates for surface-enhanced Raman scattering with enhancement at excitation and stokes frequencies[J]. ACS Nano, 2010, 4(5): 2804-2810.
[72] [72] Stoddart P R, Jayawardhana M S. Nanofabrication of surface-enhanced Raman scattering substrates for optical fiber sensors[C]. SPIE, 2013, 8613: 86130M.
[73] [73] Liu Y, Huang Z L, Zhou F, et al. Highly sensitive fibre surface-enhanced Raman scattering probes fabricated using laser-induced self-assembly in a meniscus[J]. Nanoscale, 2016, 8(20): 10607-10614.
[74] [74] Shi C, Yan H, Gu C, et al. A double substrate “sandwich” structure for fiber surface enhanced Raman scattering detection[J]. Appl Phys Lett, 2008, 92(10): 103107.
[75] [75] Smythe E J, Dickey M D, Bao J M, et al. Optical antenna arrays on a fiber facet for in situ surface-enhanced Raman scattering detection[J]. Nano Lett, 2009, 9(3): 1132-1138.
[76] [76] Yang X, Ileri N, Larson C C, et al. Nanopillar array on a fiber facet for highly sensitive surface-enhanced Raman scattering[J]. Opt Express, 2012, 20(22): 24189-24826.
Get Citation
Copy Citation Text
Liu Feifei, Zhang Xinping. Sensors Based on Metallic Photonic Structures Integrated onto End Facets of Fibers[J]. Laser & Optoelectronics Progress, 2017, 54(2): 20001
Category: Reviews
Received: Oct. 18, 2016
Accepted: --
Published Online: Feb. 10, 2017
The Author Email: Liu Feifei (929323220@qq.com)