Chinese Optics, Volume. 17, Issue 6, 1316(2024)

Image reconstruction of snapshot multispectral camera based on an attention residual network

Gang-qi YAN1, Zong-lin LIANG1, Yan-song SONG1,2,3、*, Ke-yan DONG1,2, Bo ZHANG2, Tian-ci LIU1, Lei ZHANG1, and Yan-bo WANG1
Author Affiliations
  • 1School of Opto-Electronic Engineering, Changchun University of Science and Technology, Changchun 130022, China
  • 2Institute of Space Optoelectronics Technology, Changchun University of Science and Technology, Changchun 130022, China
  • 3Peng Cheng Laboratory, Shenzhen 518052, China
  • show less
    Figures & Tables(14)
    Original image acquisition and reconstruction process for a single-sensor multispectral camera equipped with MSFA
    A multi-branch attention residual network model framework
    Mosaic channel convolutional block structure diagram
    Structural diagram of the spatial channel attention model
    Visual comparison of the de-mosaicing effect of test images under the D65 light source in sRGB color space
    Visual comparison of de-mosaicing error maps of test images in different scenarios at 679 nm
    Visual comparison of de-mosaicing error maps in different bands of test image CD
    • Table 1. PSNR, SSIM, and SAM values of the test image under the A light source

      View table
      View in Article

      Table 1. PSNR, SSIM, and SAM values of the test image under the A light source

      PSNR ↑SSIM ↑SAM ↓
      WBPPIDMGCCOursWBPPIDMGCCOursWBPPIDMGCCOurs
      balloons39.9943.2345.5245.930.99770.99880.99920.99934.8923.6933.4093.329
      beads28.3531.0332.7533.570.96100.97680.97760.985810.0878.0027.5716.182
      Egyptian35.2240.7740.9643.650.99080.99470.99530.997211.35810.6488.6537.570
      feathers32.3836.3237.0338.480.99080.99620.99640.99768.3516.7826.0365.960
      paints32.3936.2935.7938.630.99390.99730.99730.99846.5575.1784.8914.500
      pompoms36.3738.2840.5441.020.99530.99680.99780.99874.3953.5243.0032.916
      CD36.5438.5439.0139.750.99390.99530.99560.99694.2114.0433.9564.145
      Character29.2734.9138.9139.510.99420.99810.99890.99926.1033.8113.1193.049
      ChartRes30.2431.2631.4532.630.99310.99760.99840.99963.9622.7612.5291.300
      Average33.4136.7337.9939.240.99000.99460.99510.99696.6575.3834.7964.327
    • Table 2. PSNR, SSIM, and SAM values of the test image under the D65 light source

      View table
      View in Article

      Table 2. PSNR, SSIM, and SAM values of the test image under the D65 light source

      PSNR ↑SSIM ↑SAM ↓
      WBPPIDMGCCOursWBPPIDMGCCOursWBPPIDMGCCOurs
      balloons40.7344.1646.9448.360.99810.99910.99950.99973.6293.1142.7002.539
      beads25.7531.2833.2134.060.96620.98260.98080.989810.3168.3246.9576.243
      Egyptian39.2942.5042.5844.860.99290.98750.99650.997910.6428.0157.0386.919
      feathers32.6736.7237.2639.120.99160.99310.99660.99807.3775.8915.4124.843
      paints31.1836.0736.4138.900.99220.99740.98870.99866.4084.7883.9743.905
      pompoms36.8838.9041.1942.650.99620.99780.99850.99894.0323.2322.6932.753
      CD34.5438.2140.6141.530.99490.99520.99610.99673.2092.9422.7722.726
      Character28.8834.9039.6339.870.99360.99840.99940.99966.8674.1003.1082.907
      ChartRes29.3429.6532.5433.210.99510.99580.99690.99712.8402.2901.5611.324
      Average33.2536.9338.9340.280.99120.99410.99470.99746.1474.7444.0233.795
    • Table 3. PSNR, SSIM, and SAM values of the test image under the F12 light source

      View table
      View in Article

      Table 3. PSNR, SSIM, and SAM values of the test image under the F12 light source

      PSNR ↑SSIM ↑SAM ↓
      WBPPIDMGCCOursWBPPIDMGCCOursWBPPIDMGCCOurs
      balloons36.6837.8338.6038.910.99370.99520.99610.99895.5405.6405.5375.955
      beads25.8427.6527.6729.920.93900.95660.96730.972014.95813.66913.53211.424
      Egyptian36.2337.4638.2339.470.98250.98570.98620.99136.1505.7404.7633.795
      feathers30.6132.7633.5134.700.98290.98870.98890.992811.52611.19411.25110.897
      paints28.0230.8931.9833.930.97610.98710.99120.99399.8019.4409.4159.113
      pompoms32.1732.8133.9233.970.98740.98890.99070.99096.7766.3556.1505.936
      CD35.5835.9936.2637.060.98690.98720.98980.99887.9346.6915.9576.622
      Character26.1128.8632.3332.640.98240.99080.99540.99627.7946.8816.8356.767
      ChartRes25.8126.3227.6129.330.97680.98140.98260.99163.8453.1572.8371.859
      Average30.7832.2833.3434.440.97860.98460.98750.99188.2587.6407.3646.929
    • Table 4. Quantitative comparison of PSNR, SSIM, and SAM of test images processed by different de-mosaicing methods under three light sources

      View table
      View in Article

      Table 4. Quantitative comparison of PSNR, SSIM, and SAM of test images processed by different de-mosaicing methods under three light sources

      WBPPIDMGCCOurs
      PSNR29.3734.5635.6937.81
      SSIM0.89260.97050.99020.9936
      SAM8.5416.4735.6475.312
    • Table 5. Comparison of running times of different de-mosaicing methods(Unit:ms)

      View table
      View in Article

      Table 5. Comparison of running times of different de-mosaicing methods(Unit:ms)

      WBPPIDMGCCOurs
      CPU254.352134.5--
      GPU--2.652.12
    • Table 6. The ablation of different network architectures

      View table
      View in Article

      Table 6. The ablation of different network architectures

      多分支架构残差密集块PSNRSSIMSAM
      ××36.940.98697.263
      ×37.210.99076.726
      38.590.99386.218
    • Table 7. The ablation of different attention mechanism schemes

      View table
      View in Article

      Table 7. The ablation of different attention mechanism schemes

      注意力机制PSNRSSIMSAM
      RN36.240.98048.352
      CA36.790.98736.316
      MAM37.280.99276.047
      SCAM38.460.99515.247
    Tools

    Get Citation

    Copy Citation Text

    Gang-qi YAN, Zong-lin LIANG, Yan-song SONG, Ke-yan DONG, Bo ZHANG, Tian-ci LIU, Lei ZHANG, Yan-bo WANG. Image reconstruction of snapshot multispectral camera based on an attention residual network[J]. Chinese Optics, 2024, 17(6): 1316

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Oct. 31, 2023

    Accepted: --

    Published Online: Jan. 14, 2025

    The Author Email:

    DOI:10.37188/CO.2023-0196

    Topics