Journal of Infrared and Millimeter Waves, Volume. 43, Issue 4, 442(2024)

Characterization of 2 μm band soliton optical comb based on silicon nitride microcavity

Ru-Min CHENG1, Jia-Hao SUN1, Jia-Gui WU2, Deng-Ji GUO3, Jiao XU3, Jun-Bo YANG4, and Pei-Guang YAN1、*
Author Affiliations
  • 1Shenzhen Key Laboratory of Laser Engineering,School of Physics and Optoelectronic Ergineering,Shenzhen University,Shenzhen 518060,China
  • 2School of Physical Science and Technology,Southwest University,Chongqing 400715,China
  • 3Institute of Semiconductor Manufacturing Research,College of Mechatronics and Control Engineering,Shenzhen 518060,China
  • 4College of Science,National University of Defense Technology,Changsha 410015,China
  • show less
    References(36)

    [1] Bradley T D, Jasion G T, Hayes J R et al. Antiresonant hollow core fibre with 0.65 dB/km attenuation across the C and L telecommunication bands[C], 1-4(2019).

    [2] Pfeifle J, Brasch V, Lauermann M et al. Coherent terabit communications with microresonator Kerr frequency combs[J]. Nature Photonics, 8, 375-380(2014).

    [3] Niu R, Li M, Wan S et al. kHz-precision wavemeter based on reconfigurable microsoliton[J]. Nature Communications, 14, 169(2023).

    [4] Reimer C, Kues M, Roztocki P et al. Generation of multiphoton entangled quantum states by means of integrated frequency combs[J]. Science, 351, 1176-1180(2016).

    [5] Suh M G, Vahala K J. Soliton microcomb range measurement[J]. Science, 359, 884-887(2018).

    [6] Karpov M, Pfeiffer M H P, Liu J et al. Photonic chip-based soliton frequency combs covering the biological imaging window[J]. Nature communications, 9, 1146(2018).

    [7] Diddams S A, Vahala K, Udem T. Optical frequency combs: Coherently uniting the electromagnetic spectrum[J]. Science, 369, eaay3676(2020).

    [8] Wang Jun, Zhang Xiaoyan et al. Research Progress of Two-Dimensional Nonlinear Optical Materials and Devices[J]. Chinese Journal of Lasers, 44, 0703004(2017).

    [9] Wang X, Liu Y J, Zhang Z M et al. Research progress in 2 μm waveband on-chip photonic integrated devices (Invited)[J]. Infrared and Laser Engineering, 51, 104-115(2022).

    [10] Gaeta A L, Lipson M, Kippenberg T J. Photonic-chip-based frequency combs[J]. Nature Photonics, 13, 158-169(2019).

    [11] Herr T, Brasch V, Jost J D et al. Temporal solitons in optical microresonators[J]. Nature Photonics, 8, 145-152(2014).

    [12] Brasch V, Geiselmann M, Herr T et al. Photonic chip–based optical frequency comb using soliton Cherenkov radiation[J]. Science, 351, 357-360(2016).

    [13] Guo H, Karpov M, Lucas E et al. Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators[J]. Nature Physics, 13, 94-102(2017).

    [14] Yao S, Bao C, Wang P et al. Generation of stable and breathing flat-top solitons via Raman assisted four wave mixing in microresonators[J]. Physical Review A, 101, 023833(2020).

    [15] Tikan A, Riemensberger J, Komagata K et al. Emergent nonlinear phenomena in a driven dissipative photonic dimer[J]. Nature Physics, 17, 604-610(2021).

    [16] Lu J, Puzyrev D N, Pankratov V V et al. Two-colour dissipative solitons and breathers in microresonator second-harmonic generation[J]. Nature Communications, 14, 2798(2023).

    [17] Kippenberg T J, Gaeta A L, Lipson M et al. Dissipative Kerr solitons in optical microresonators[J]. Science, 361, eaan8083(2018).

    [18] Luke K, Okawachi Y, Lamont M R E et al. Broadband mid-infrared frequency comb generation in a Si3N4 microresonator[J]. Optics Letters, 40, 4823-4826(2015).

    [19] Pfeiffer M H P, Kordts A, Brasch V et al. Photonic Damascene process for integrated high-Q microresonator based nonlinear photonics[J]. Optica, 3, 20-25(2016).

    [20] Agrawal G P[M]. Fiber-optic communication systems(2012).

    [21] Tzolov V P, Fontaine M, Godbout N et al. Nonlinear self-phase-modulation effects: a vectorial first-order perturbation approach[J]. Optics Letters, 20, 456-458(1995).

    [22] Hult J. A fourth-order Runge–Kutta in the interaction picture method for simulating supercontinuum generation in optical fibers[J]. Journal of Lightwave Technology, 25, 3770-3775(2007).

    [23] Lugiato L A, Lefever R. Spatial dissipative structures in passive optical systems[J]. Physical Review Letters, 58, 2209(1987).

    [24] Coen S, Randle H G, Sylvestre T et al. Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato–Lefever model[J]. Optics Letters, 38, 37-39(2013).

    [25] Leo F, Coen S, Kockaert P et al. Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer[J]. Nature Photonics, 4, 471-476(2010).

    [26] Pasquazi A, Peccianti M, Razzari L et al. Micro-combs: A novel generation of optical sources[J]. Physics Reports, 729, 1-81(2018).

    [27] Coen S, Erkintalo M. Universal scaling laws of Kerr frequency combs[J]. Optics Letters, 38, 1790-1792(2013).

    [28] Karpov M, Guo H, Kordts A et al. Raman self-frequency shift of dissipative Kerr solitons in an optical microresonator[J]. Physical Review Letters, 116, 103902(2016).

    [29] Guo H, Lucas E, Pfeiffer M H P et al. Intermode breather solitons in optical microresonators[J]. Physical Review X, 7, 041055(2017).

    [30] Wang W, Lu Z, Zhang W et al. Robust soliton crystals in a thermally controlled microresonator[J]. Optics Letters, 43, 2002-2005(2018).

    [31] Xue X, Xuan Y, Liu Y et al. Mode-locked dark pulse Kerr combs in normal-dispersion microresonators[J]. Nature Photonics, 9, 594-600(2015).

    [32] Helgason Ó B, Arteaga-Sierra F R, Ye Z et al. Dissipative solitons in photonic molecules[J]. Nature Photonics, 15, 305-310(2021).

    [33] Arbabi A, Goddard L L. Measurements of the refractive indices and thermo-optic coefficients of Si 3 N 4 and SiO x using microring resonances[J]. Optics letters, 38, 3878-3881(2013).

    [34] Huang G, Lucas E, Liu J et al. Thermorefractive noise in silicon-nitride microresonators[J]. Physical Review A, 99, 061801(2019).

    [35] Guo H, Lucas E, Pfeiffer M H P et al. Intermode breather solitons in optical microresonators[J]. Physical Review X, 7, 041055(2017).

    [36] Yi X, Yang Q F, Zhang X et al. Single-mode dispersive waves and soliton microcomb dynamics[J]. Nature communications, 8, 14869(2017).

    Tools

    Get Citation

    Copy Citation Text

    Ru-Min CHENG, Jia-Hao SUN, Jia-Gui WU, Deng-Ji GUO, Jiao XU, Jun-Bo YANG, Pei-Guang YAN. Characterization of 2 μm band soliton optical comb based on silicon nitride microcavity[J]. Journal of Infrared and Millimeter Waves, 2024, 43(4): 442

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Oct. 8, 2023

    Accepted: --

    Published Online: Aug. 27, 2024

    The Author Email: Pei-Guang YAN (yanpg@szu.edu.cn)

    DOI:10.11972/j.issn.1001-9014.2024.04.002

    Topics