Journal of Inorganic Materials, Volume. 38, Issue 7, 717(2023)

Flexible Piezoelectric Devices and Their Wearable Applications

Aiqin MAO1, Wenyu LU1, Yanggang JIA1, Ranran WANG2,3、*, and Jing SUN2
Author Affiliations
  • 11. School of Materials Science and Engineering, Anhui University of Technology, Maanshan 243032, China
  • 22. The State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
  • 33. School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
  • show less
    References(98)

    [7] MAHANTY B, GHOSH S K, JANA S et al. ZnO nanoparticle confined stress amplified all-fiber piezoelectric nanogenerator for self-powered healthcare monitoring[J]. Sustainable Energy & Fuels, 4389(2021).

    [10] LE A T, AHMADIPOUR M, PUNG S Y. A review on ZnO-based piezoelectric nanogenerators: synthesis, characterization techniques, performance enhancement and applications[J]. Journal of Alloys and Compounds, 156172(2020).

    [11] ZHU L, XIANG Y, LIU Y et al. Comparison of piezoelectric responses of flexible tactile sensors based on hydrothermally- grown ZnO nanorods on ZnO seed layers with different thicknesses[J]. Sensors and Actuators A: Physical, 113552(2022).

    [14] SHEPELIN N A, GLUSHENKOV A M, LUSSINI V C et al. New developments in composites, copolymer technologies and processing techniques for flexible fluoropolymer piezoelectric generators for efficient energy harvesting[J]. Energy & Environmental Science, 1143(2019).

    [15] YANG X, LIU J, PEI Y et al. Recent progress in preparation and application of nano-chitin materials[J]. Energy & Environmental Materials, 492(2020).

    [19] STREET R M, MINAGAWA M, VENGRENYUK A et al. Piezoelectric electrospun polyacrylonitrile with various tacticities[J]. Journal of Applied Polymer Science, 47530(2019).

    [20] PI Z, ZHANG J, WEN C et al. Flexible piezoelectric nanogenerator made of poly(vinylidenefluoride-co-trifluoroethylene) (PVDF-TrFE) thin film[J]. Nano Energy, 33(2014).

    [22] LI H, LIAN W, CHENG T et al. Highly tunable piezoelectricity of flexible nanogenerators based on 3D porously architectured membranes for versatile energy harvesting and self-powered multistimulus sensing[J]. ACS Sustainable Chemistry & Engineering, 17128(2021).

    [23] LOVINGER A J. Ferroelectric polymers[J]. Science, 1115(1983).

    [25] ZHANG M, GAO T, WANG J et al. Single BaTiO3 nanowires- polymer fiber based nanogenerator[J]. Nano Energy, 510(2015).

    [26] NIU X, JIA W, QIAN S et al. High-performance PZT-based stretchable piezoelectric nanogenerator[J]. ACS Sustainable Chemistry & Engineering, 979(2019).

    [30] GARAIN S, JANA S, SINHA T K et al. Design of in situ poled Ce3+-doped electrospun PVDF/graphene composite nanofibers for fabrication of nanopressure sensor and ultrasensitive acoustic nanogenerator[J]. ACS Applied Materials & Interfaces, 4532(2016).

    [32] ZHAO C, NIU J, ZHANG Y et al. Coaxially aligned MWCNTs improve performance of electrospun P(VDF-TrFE)-based fibrous membrane applied in wearable piezoelectric nanogenerator[J]. Composites Part B: Engineering, 107447(2019).

    [34] WANG S, SHAO H Q, LIU Y et al. Boosting piezoelectric response of PVDF-TrFE via MXene for self-powered linear pressure sensor[J]. Composites Science and Technology, 108600(2021).

    [35] KIM J, JANG M, JEONG G et al. MXene-enhanced β-phase crystallization in ferroelectric porous composites for highly- sensitive dynamic force sensors[J]. Nano Energy, 106409(2021).

    [36] YANG Y N, WANG R R, SUN J. MXenes in flexible force sensitive sensors: a review[J]. Journal of Inorganic Materials, 8(2019).

    [37] SINGH D, CHOUDHARY A, GARG A. Flexible and robust piezoelectric polymer nanocomposites based energy harvesters[J]. ACS Applied Materials & Interfaces, 2793(2018).

    [41] SAMADI A, HOSSEINI S M, MOHSENI M. Investigation of the electromagnetic microwaves absorption and piezoelectric properties of electrospun Fe3O4-GO/PVDF hybrid nanocomposites[J]. Organic Electronics, 149(2018).

    [42] NARDEKAR S S, KRISHNAMOORTHY K, PAZHAMALAI P et al. MoS2 quantum sheets-PVDF nanocomposite film based self-poled piezoelectric nanogenerators and photovoltaically self-charging power cell[J]. Nano Energy, 106869(2022).

    [43] DUDEM B, KIM D H, BHARAT L K et al. Highly-flexible piezoelectric nanogenerators with silver nanowires and barium titanate embedded composite films for mechanical energy harvesting[J]. Applied Energy, 865(2018).

    [44] KOç M, PARALı L, ŞAN O. Fabrication and vibrational energy harvesting characterization of flexible piezoelectric nanogenerator (PEN) based on PVDF/PZT[J]. Polymer Testing, 106695(2020).

    [45] YANG T, PAN H, TIAN G et al. Hierarchically structured PVDF/ZnO core-shell nanofibers for self-powered physiological monitoring electronics[J]. Nano Energy, 104706(2020).

    [46] MARIA JOSEPH RAJ N P, KS A, KHANDELWAL G et al. A lead-free ferroelectric Bi0.5Na0.5TiO3 based flexible, lightweight nanogenerator for motion monitoring applications[J]. Sustainable Energy & Fuels, 5636(2020).

    [47] NAIR K S, VARGHESE H, CHANDRAN A et al. Synthesis of KNN nanoblocks through surfactant-assisted hot injection method and fabrication of flexible piezoelectric nanogenerator based on KNN-PVDF nanocomposite[J]. Materials Today Communications, 103291(2022).

    [48] HU X, YAN X, GONG L et al. Improved piezoelectric sensing performance of P(VDF-TrFE) nanofibers by utilizing BTO nanoparticles and penetrated electrodes[J]. ACS Applied Materials & Interfaces, 7379(2019).

    [50] SONG Y, WU T, BAO J et al. Porous cellulose composite aerogel films with super piezoelectric properties for energy harvesting[J]. Carbohydrate Polymers, 119407(2022).

    [52] KIM K N, CHUN J, CHAE S A et al. Silk fibroin-based biodegradable piezoelectric composite nanogenerators using lead-free ferroelectric nanoparticles[J]. Nano Energy, 87(2015).

    [53] HEO K, JIN H E, KIM H et al. Transient self-templating assembly of M13 bacteriophage for enhanced biopiezoelectric devices[J]. Nano Energy, 716(2019).

    [54] SHIN D M, HAN H J, KIM W G et al. Bioinspired piezoelectric nanogenerators based on vertically aligned phage nanopillars[J]. Energy & Environmental Science, 3198(2015).

    [57] YU S, TAI Y, MILAM-GUERRERO J et al. Electrospun organic piezoelectric nanofibers and their energy and bio applications[J]. Nano Energy, 107174(2022).

    [60] SU Y, LI W, YUAN L et al. Piezoelectric fiber composites with polydopamine interfacial layer for self-powered wearable biomonitoring[J]. Nano Energy, 106321(2021).

    [61] SHUAI C, LIU G, YANG Y et al. A strawberry-like Ag-decorated barium titanate enhances piezoelectric and antibacterial activities of polymer scaffold[J]. Nano Energy, 104825(2020).

    [62] ZHOU Z, ZHANG Z, ZHANG Q et al. Controllable core-shell BaTiO3@carbon nanoparticle-enabled P(VDF-TrFE) composites: a cost-effective approach to high-performance piezoelectric nanogenerators[J]. ACS Applied Materials & Interfaces, 1567(2020).

    [63] JELLA V, IPPILI S, EOM J H et al. Enhanced output performance of a flexible piezoelectric energy harvester based on stable MAPbI3-PVDF composite films[J]. Nano Energy, 46(2018).

    [65] CHO Y, JEONG J, CHOI M et al. BaTiO3@PVDF-TrFE nanocomposites with efficient orientation prepared via phase separation nano-coating method for piezoelectric performance improvement and application to 3D-PENG[J]. Chemical Engineering Journal, 131030(2022).

    [67] FU J, HOU Y, GAO X et al. Highly durable piezoelectric energy harvester based on a PVDF flexible nanocomposite filled with oriented BaTi2O5 nanorods with high power density[J]. Nano Energy, 391(2018).

    [70] ZHANG S T, AN Q. Progress on the design and fabrication of high performance piezoelectric flexible materials based on polyvinylidene fluoride[J]. Chemical Journal of Chinese Universities, 1114(2021).

    [71] WANG G, LIU T, SUN X C et al. Flexible pressure sensor based on PVDF nanofiber[J]. Sensors and Actuators A: Physical, 319(2018).

    [73] AJRAVAT K, BRAR L K. Topographical evolution of multilayer PVDF thin films deposited using Langmuir-Blodgett technique[conf-proc]. AIP Conference Proceedings, 030317(2020).

    [76] YANG Y, PAN H, XIE G et al. Flexible piezoelectric pressure sensor based on polydopamine-modified BaTiO3/PVDF composite film for human motion monitoring[J]. Sensors and Actuators A: Physical, 111789(2020).

    [78] LI X, JI D, YU B et al. Boosting piezoelectric and triboelectric effects of PVDF nanofiber through carbon-coated piezoelectric nanoparticles for highly sensitive wearable sensors[J]. Chemical Engineering Journal, 130345(2021).

    [79] GOEL S, KUMAR B. A review on piezo-/ferro-electric properties of morphologically diverse ZnO nanostructures[J]. Journal of Alloys and Compounds, 152491(2020).

    [81] CAO V A, KIM M, LEE S et al. Enhanced output performance of a flexible piezoelectric nanogenerator realized by lithium-doped zinc oxide nanowires decorated on MXene[J]. ACS Applied Materials & Interfaces, 26824(2022).

    [82] KANG L, AN H, PARK J Y et al. La-doped p-type ZnO nanowire with enhanced piezoelectric performance for flexible nanogenerators[J]. Applied Surface Science, 969(2019).

    [85] ZHANG Y, LIU C, LIU J et al. Lattice strain induced remarkable enhancement in piezoelectric performance of ZnO-based flexible nanogenerators[J]. ACS Applied Materials & Interfaces, 1381(2016).

    [90] WANG A, LIU Z, HU M et al. Piezoelectric nanofibrous scaffolds as in vivo energy harvesters for modifying fibroblast alignment and proliferation in wound healing[J]. Nano Energy, 63(2018).

    [91] TAN M H, XU X H, YUAN T J et al. Self-powered smart patch promotes skin nerve regeneration and sensation restoration by delivering biological-electrical signals in program[J]. Biomaterials, 121413(2022).

    [94] LÜ P, QIAN J, YANG C et al. Flexible all-inorganic Sm-doped PMN-PT film with ultrahigh piezoelectric coefficient for mechanical energy harvesting, motion sensing, and human-machine interaction[J]. Nano Energy, 107182(2022).

    [96] DENG W, YANG T, JIN L et al. Cowpea-structured PVDF/ZnO nanofibers based flexible self-powered piezoelectric bending motion sensor towards remote control of gestures[J]. Nano Energy, 516(2019).

    Tools

    Get Citation

    Copy Citation Text

    Aiqin MAO, Wenyu LU, Yanggang JIA, Ranran WANG, Jing SUN. Flexible Piezoelectric Devices and Their Wearable Applications[J]. Journal of Inorganic Materials, 2023, 38(7): 717

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Sep. 19, 2022

    Accepted: --

    Published Online: Dec. 28, 2023

    The Author Email: Ranran WANG (wangranran@mail.sic.ac.cn)

    DOI:10.15541/jim20220549

    Topics