Laser & Optoelectronics Progress, Volume. 61, Issue 4, 0437002(2024)
Micro-Video Event Detection Based on Deep Dynamic Semantic Correlation
[1] Xie J Y, Zhu Y C, Zhang Z B et al. A multimodal variational encoder-decoder framework for micro-video popularity prediction[C], 2542-2548(2020).
[2] Jing P G, Su Y T, Nie L Q et al. Low-rank multi-view embedding learning for micro-video popularity prediction[J]. IEEE Transactions on Knowledge and Data Engineering, 30, 1519-1532(2018).
[3] Jing P G, Ye X Q, Liu Y et al. Micro-video popularity prediction with bidirectional deep encoding network[J]. Laser & Optoelectronics Progress, 59, 0811009(2022).
[4] Su Y T, Hong D Z, Li Y et al. Low-rank regularized deep collaborative matrix factorization for micro-video multi-label classification[J]. IEEE Signal Processing Letters, 27, 740-744(2020).
[5] Liu M, Nie L Q, Wang X et al. Online data organizer: micro-video categorization by structure-guided multimodal dictionary learning[J]. IEEE Transactions on Image Processing, 28, 1235-1247(2019).
[6] Wei Y W, Wang X, Nie L Q et al. MMGCN: multi-modal graph convolution network for personalized recommendation of micro-video[C], 1437-1445(2019).
[7] Chen J, Peng J J, Qi L Z et al. Implicit rating methods based on interest preferences of categories for micro-video recommendation[M]. Douligeris C, Karagiannis D, Apostolou D. Knowledge science, engineering and management. Lecture notes in computer science, 11775, 371-381(2019).
[8] Redi M, O'Hare N, Schifanella R et al. 6 seconds of sound and vision: creativity in micro-videos[C], 4272-4279(2014).
[9] Zhang J, Wu Y T, Liu J H et al. Low-rank regularized multimodal representation for micro-video event detection[J]. IEEE Access, 8, 87266-87274(2020).
[10] Over P, Fiscus J, Sanders G et al. TRECVID 2014-an overview of the goals, tasks, data, evaluation mechanisms and metrics[C], 1-53(2014).
[11] Alomari E, Katib I, Mehmood R. Iktishaf: a big data road-traffic event detection tool using twitter and spark machine learning[J]. Mobile Networks and Applications, 1-16(2020).
[12] Wan S H, Xu X L, Wang T et al. An intelligent video analysis method for abnormal event detection in intelligent transportation systems[J]. IEEE Transactions on Intelligent Transportation Systems, 22, 4487-4495(2021).
[13] Yang X B, Dang J W, Wang S et al. Anomaly event detection based on two-stream network and multi-instance learning[J]. Laser & Optoelectronics Progress, 58, 2015006(2021).
[14] Zhang K, Chao W L, Sha F et al. Video summarization with long short-term memory[M]. Leibe B, Matas J, Sebe N, et al. Computer vision-ECCV 2016. Lecture notes in computer science, 9911, 766-782(2016).
[15] Rochan M, Ye L W, Wang Y. Video summarization using fully convolutional sequence networks[M]. Ferrari V, Hebert M, Sminchisescu C, et al. Computer vision–ECCV 2018. Lecture notes in computer science, 11216, 358-374(2018).
[16] Wang H Y, Wang C P, Fu Q et al. Lightweight ship detection based on optical remote sensing images for embedded platform[J]. Acta Optica Sinica, 43, 121-134(2023).
[17] Lü M L, He Y Q, Yang J K et al. Anti-counterfeiting detection method of contact lens iris based on cyclic attention mechanism[J]. Acta Optica Sinica, 42, 2315001(2022).
[18] Liu H X, Zhao Y M, Zhang C L et al. Study on reconstruction of tooth cone beam CT image based on improved U-net[J]. Chinese Journal of Lasers, 49, 2407207(2022).
[19] Chu G H, Fan D Z, Dong Y et al. A cross-source image point cloud registration method combined with graph theory[J]. Acta Optica, 43, 264-272(2023).
[20] Chen Z M, Wei X S, Wang P et al. Multi-label image recognition with graph convolutional networks[C], 5172-5181(2020).
[21] Liu L, Li Y X, Ni R S et al. Synthetic aperture radar and optical images registration based on convolutional and graph neural networks[J]. Acta Optica Sinica, 42, 2410002(2022).
[22] Bastings J, Titov I, Aziz W et al. Graph convolutional encoders for syntax-aware neural machine translation[C], 1957-1967(2017).
[23] Tian S, Long A Y. Point cloud classification method based on graph convolution and multi-layer feature fusion[J]. Lasers & Optoelectronics Progress, 60, 281-288(2023).
[24] Tran D, Bourdev L, Fergus R et al. Learning spatiotemporal features with 3D convolutional networks[C], 4489-4497(2016).
[25] Hara K, Kataoka H, Satoh Y. Can spatiotemporal 3D CNNs retrace the history of 2D CNNs and ImageNet?[C], 6546-6555(2018).
[26] Li S, Fu Y. Learning robust and discriminative subspace with low-rank constraints[J]. IEEE Transactions on Neural Networks and Learning Systems, 27, 2160-2173(2016).
[27] Chang X J, Yu Y L, Yang Y et al. Semantic pooling for complex event analysis in untrimmed videos[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 1617-1632(2017).
[28] Xu Y, Fang X Z, Wu J et al. Discriminative transfer subspace learning via low-rank and sparse representation[J]. IEEE Transactions on Image Processing, 25, 850-863(2016).
[30] Cao Y W, Peng H, Wu J et al. Knowledge-preserving incremental social event detection via heterogeneous GNNs[C], 3383-3395(2021).
[31] Wang L M, Xiong Y J, Wang Z et al. Temporal segment networks for action recognition in videos[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 41, 2740-2755(2019).
[32] Gkalelis N, Daskalakis D, Mezaris V. Gated-ViGAT: efficient bottom-up event recognition and explanation using a new frame selection policy and gating mechanism[C], 113-120(2023).
[33] You H, Samuel D, Touileb S et al. EventGraph: event extraction as semantic graph parsing[C], 7-15(2022).
[34] Scharwächter E, Müller E. Two-sample testing for event impacts in time series[C], 10-18(2020).
[35] Peng H, Li J X, Song Y Q et al. Streaming social event detection and evolution discovery in heterogeneous information networks[J]. ACM Transactions on Knowledge Discovery from Data, 15, 89(2021).
[36] Lin J, Gan C, Han S. TSM: temporal shift module for efficient video understanding[C], 7082-7092(2020).
[37] Tan M, Le Q. Efficientnet: rethinking model scaling for convolutional neural networks[C], 6105-6114(2019).
[38] Feichtenhofer C. X3D: expanding architectures for efficient video recognition[C], 200-210(2020).
Get Citation
Copy Citation Text
Peiguang Jing, Xiaoyi Song, Yuting Su. Micro-Video Event Detection Based on Deep Dynamic Semantic Correlation[J]. Laser & Optoelectronics Progress, 2024, 61(4): 0437002
Category: Digital Image Processing
Received: Mar. 30, 2023
Accepted: Jun. 1, 2023
Published Online: Feb. 26, 2024
The Author Email: Peiguang Jing (pgjing@tju.edu.cn)
CSTR:32186.14.LOP230994