Chinese Optics, Volume. 13, Issue 1, 43(2020)
Recent progress in tunable metalenses
[1] [1] OKU H, HASHIMOTO K, ISHIKAWA M. Variable-focus lens with 1-kHz bandwidth[J]. Optics Express, 2004, 12(10): 2138-2149.
[2] [2] REN H W, WU S T. Variable-focus liquid lens[J]. Optics Express, 2007, 15(10): 5931-5936.
[3] [3] JIA J SH. Performance study of tunable-focus electroholography lens[D]. Harbin: Harbin Institute of Technology, 2013: 1-7. (in Chinese)
[5] [5] ZHELUDEV N I. The road ahead for metamaterials[J]. Science, 2010, 328(5978): 582-583.
[6] [6] FEDOTOV V A, MLADYONOV P L, PROSVIRNIN S L, et al.. Asymmetric propagation of electromagnetic waves through a planar chiral structure[J]. Physical Review Letters, 2006, 97(16): 167401.
[7] [7] LANDY N I, SAJUYIGBE S, MOCK J J, et al.. Perfect metamaterial absorber[J]. Physical Review Letters, 2008, 100(20): 207402.
[8] [8] ZHELUDEV N I, KIVSHAR Y S. From metamaterials to metadevices[J]. Nature Materials, 2012, 11(11): 917-924.
[9] [9] KILDISHEV A V, BOLTASSEVA A, SHALAEV V M. Planar photonics with metasurfaces[J]. Science, 2013, 339(6125): 1232009.
[10] [10] YU N F, CAPASSO F. Flat optics with designer metasurfaces[J]. Nature Materials, 2014, 13(2): 139-150.
[11] [11] GENEVET P, CAPASSO F, AIETA F, et al.. Recent advances in planar optics: from plasmonic to dielectric metasurfaces[J]. Optica, 2017, 4(1): 139-152.
[12] [12] DING F, PORS A, BOZHEVOLNYI S I. Gradient metasurfaces: a review of fundamentals and applications[J]. Reports on Progress in Physics, 2018, 81(2): 026401.
[13] [13] YU N F, AIETA F, GENEVET P, et al.. A broadband, background-free quarter-wave plate based on plasmonic metasurfaces[J]. Nano Letters, 2012, 12(12): 6328-6333.
[14] [14] SIDDIQUE R H, MERTENS J, HLSCHER H, et al.. Scalable and controlled self-assembly of aluminum-based random plasmonic metasurfaces[J]. Light: Science & Applications, 2017, 6(7): e17015.
[15] [15] PORS A, NIELSEN M G, ERIKSEN R L, et al.. Broadband focusing flat mirrors based on plasmonic gradient metasurfaces[J]. Nano Letters, 2013, 13(2): 829-834.
[16] [16] ZHENG G X, MHLENBERND H, KENNEY M, et al.. Metasurface holograms reaching 80% efficiency[J]. Nature Nanotechnology, 2015, 10(4): 308-312.
[17] [17] REN M X, WU W, CAI W, et al.. Reconfigurable metasurfaces that enable light polarization control by light[J]. Light: Science & Applications, 2017, 6(6): e16254.
[18] [18] ROGERS E T F, LINDBERG J, ROY T, et al.. A super-oscillatory lens optical microscope for subwavelength imaging[J]. Nature Materials, 2012, 11(5): 432-435.
[19] [19] WINTZ D, GENEVET P, AMBROSIO A, et al.. Holographic metalens for switchable focusing of surface plasmons[J]. Nano Letters, 2015, 15(5): 3585-3589.
[20] [20] KHORASANINEJAD M, CAPASSO F. Metalenses: versatile multifunctional photonic components[J]. Science, 2017, 358(6367): eaam8100.
[21] [21] WANG SH M, WU P C, SU V C, et al.. Broadband achromatic optical metasurface devices[J]. Nature Communications, 2017, 8(1): 187.
[22] [22] WANG SH M, WU P C, SU V C, et al.. A broadband achromatic metalens in the visible[J]. Nature Nanotechnology, 2018, 13(3): 227-232.
[23] [23] CHEN K, FENG Y J, MONTICONE F, et al.. A reconfigurable active Huygens′ Metalens[J]. Advanced Materials, 2017, 29(17): 1606422.
[24] [24] HUANG Z D, HU B, LIU W G, et al.. Dynamical tuning of terahertz meta-lens assisted by graphene[J]. Journal of the Optical Society of America B, 2017, 34(9): 1848-1854.
[26] [26] KIM T T, KIM H, KENNEY M, et al.. Amplitude modulation of anomalously refracted terahertz waves with gated-graphene metasurfaces[J]. Advanced Optical Materials, 2018, 6(1): 1700507.
[27] [27] SHE A L, ZHANG SH Y, SHIAN S, et al.. Adaptive metalenses with simultaneous electrical control of focal length, astigmatism, and shift[J]. Science Advances, 2018, 4(2): eaap9957.
[28] [28] FOROUZMAND A, SALARY M M, INAMPUDI S, et al.. A tunable multigate indium-tin-oxide-assisted all-dielectric metasurface[J]. Advanced Optical Materials, 2018, 6(7): 1701275.
[29] [29] KAO T S, CHEN Y G, HONG M H. Controlling the near-field excitation of nano-antennas with phase-change materials[J]. Beilstein Journal of Nanotechnology, 2013, 4: 632-637.
[30] [30] CHEN Y G, KAO T S, NG B, et al.. Hybrid phase-change plasmonic crystals for active tuning of lattice resonances[J]. Optics Express, 2013, 21(11): 13691-13698.
[31] [31] MICHEL A K U, CHIGRIN D N, MA T W W, et al.. Using low-loss phase-change materials for mid-infrared antenna resonance tuning[J]. Nano Letters, 2013, 13(8): 3470-3475.
[32] [32] CHEN Y G, LI X, SONNEFRAUD Y, et al.. Engineering the phase front of light with phase-change material based planar lenses[J]. Scientific Reports, 2015, 5: 8660.
[33] [33] WANG Q, ROGERS E T F, GHOLIPOUR B, et al.. Optically recongurable metasurfaces and photonic devices based on phase change materials[J]. Nature Photonics, 2016, 10(1): 60-65.
[34] [34] ZHONG J W, AN N, YI N B, et al.. Broadband and tunable-focus flat lens with dielectric metasurface[J]. Plasmonics, 2016, 11(2): 537-541.
[35] [35] QIN L, XIE X Y, LI J L. Development status and future development trend of MEMS technology[J]. Modern Defense Technology, 2017, 45(4): 1-5, 23. (in Chinese)
[36] [36] LIN L Y, HERZIG H P. Introduction to the feature section on optical MEMS and nanophotonics[J]. IEEE Journal of Quantum Electronics, 2010, 46(9): 1235-1236.
[37] [37] ROY T, ZHANG SH Y, JUNG I W, et al.. Dynamic metasurface lens based on MEMS technology[J]. APL Photonics, 2018, 3(2): 021302.
[38] [38] ARBABI E, ARBABI A, KAMALI S M, et al.. MEMS-tunable dielectric metasurface lens[J]. Nature Communications, 2018, 9(1): 812.
[39] [39] COLBURN S, ZHAN A L, MAJUMDAR A. Varifocal zoom imaging with large area focal length adjustable metalenses[J]. Optica, 2018, 5(7): 825-831.
[40] [40] EE H S, AGARWAL R. Tunable metasurface and flat optical zoom lens on a stretchable substrate[J]. Nano Letters, 2016, 16(4): 2818-2823.
[41] [41] MAHSA KAMALI S, ARBABI E, ARBABI A, et al.. Highly tunable elastic dielectric metasurface lenses[J]. Laser & Photonics Reviews, 2016, 10(6): 1002-1008.
[42] [42] CALLEWAERT F, VELEV V, JIANG SH ZH, et al.. Inverse-designed stretchable metalens with tunable focal distance[J]. Applied Physics Letters, 2018, 112(9): 091102.
[43] [43] ZHU W M, SONG Q H, YAN L B, et al.. A flat lens with tunable phase gradient by using random access recongurable metamaterial[J]. Advanced Materials, 2015, 27(32): 4739-4743.
[44] [44] ZHANG J F, MACDONALD K F, ZHELUDEV N I. Nonlinear dielectric optomechanical metamaterials[J]. Light: Science & Applications, 2013, 2(8): e96.
[45] [45] OU J Y, PLUM E, ZHANG J F, et al.. Giant nonlinearity of an optically reconfigurable plasmonic metamaterial[J]. Advanced Materials, 2016, 28(4): 729-733.
[46] [46] AURO M P, SERGEI K T, KESTUTIS S. Gain through losses in nonlinear optics[J]. Light: science & Applications, 2018,7,e43.
[47] [47] ZHU Y, HU X Y, FU Y L, et al.. Ultralow-power and ultrafast all-optical tunable plasmon-induced transparency in metamaterials at optical communication range[J]. Scientific Reports, 2013, 3: 2338.
[48] [48] DANI K M, KU Z, UPADHYA P C, et al.. Subpicosecond optical switching with a negative index metamaterial[J]. Nano Letters, 2009, 9(10): 3565-3569.
[49] [49] CHEN J, WANG K, LONG H, et al.. Tungsten disulfide-gold nanohole hybrid metasurfaces for nonlinear metalenses in the visible region[J]. Nano Letters, 2018, 18(2): 1344-1350.
[50] [50] SCHLICKRIEDE C, WATERMAN N, REINEKE B, et al.. Imaging through nonlinear metalens using second harmonic generation[J]. Advanced Materials, 2018, 30(8): 1703843.
Get Citation
Copy Citation Text
LIN Yu, JIANG Chun-ping. Recent progress in tunable metalenses[J]. Chinese Optics, 2020, 13(1): 43
Category:
Received: Nov. 7, 2018
Accepted: --
Published Online: Mar. 9, 2020
The Author Email: