Chinese Journal of Lasers, Volume. 51, Issue 19, 1901006(2024)

Integrated Development of Ultrafast Ultra‐Intense Laser Technology with Fiber Laser Coherent Beam Combination Technology (Invited)

Can Li1、*, Jiayi Zhang1, Bo Ren1, Hongxiang Chang1, Tao Wang1, Kun Guo1, Yuqiu Zhang1, Rongtao Su1,2,3, Jinyong Leng1,2,3, Jiangming Xu1, Jian Wu1, and Pu Zhou1
Author Affiliations
  • 1College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, Hunan , China
  • 2Nanhu Laser Laboratory, National University of Defense Technology, Changsha 410073, Hunan , China
  • 3Hunan Provincial Key Laboratory of High Energy Laser Technology, National University of Defense Technology, Changsha 410073, Hunan , China
  • show less
    References(146)

    [5] Service R F. Physics. Laser labs race for the petawatt[J]. Science, 301, 154-156(2003).

    [7] Li R X, Leng Y X, Xu Z Z. Progress in superintense ultrafast lasers and their applications[J]. Physics, 44, 509-517(2015).

    [8] Wei Z Y[M]. Advances in ultrafast optics(2014).

    [9] Gales S, Tanaka K A, Balabanski D L et al. The extreme light infrastructure-nuclear physics (ELI-NP) facility: new horizons in physics with 10 PW ultra-intense lasers and 20 MeV brilliant gamma beams[J]. Reports on Progress in Physics, 81, 094301(2018).

    [10] Papadopoulos D N, Zou J P, Le Blanc C et al. The apollon 10 PW laser: experimental and theoretical investigation of the temporal characteristics[J]. High Power Laser Science and Engineering, 4, e34(2016).

    [12] Mourou G. Science and applications of the coherent amplifying network (CAN) laser[J]. The European Physical Journal Special Topics, 224, 2527-2528(2015).

    [17] Shaykin A, Kostyukov I, Sergeev A et al. Prospects of PEARL 10 and XCELS laser facilities[J]. The Review of Laser Engineering, 42, 141(2014).

    [24] Chang Q, Hou T Y, Long J H et al. Experimental phase stabilization of a 397-channel laser beam array via image processing in dynamic noise environment[J]. Journal of Lightwave Technology, 40, 6542-6547(2022).

    [27] Wu J, Ma Y X, Ma P F et al. Fiber laser coherent synthesis 20 kW high power output[J]. Infrared and Laser Engineering, 50, 20210621(2021).

    [28] Limpert J, Jauregui C, Klenke A et al. Performance scaling of ultrafast laser systems by coherent addition of femtosecond pulses[C], 268-277(2014).

    [29] Su R T, Zhou P, Zhang P F et al. Review on the progress in coherent beam combining of ultra-short fiber lasers (Invited)[J]. Infrared and Laser Engineering, 47, 0103001(2018).

    [31] Wang J S, Zhang Y, Wang J L et al. Recent progress of coherent combining technology in femtosecond fiber lasers[J]. Acta Physica Sinica, 70, 034206(2021).

    [32] Mourou G A, Hulin D, Galvanauskas A. The road to high peak power and high average power lasers: coherent-amplification-network (CAN)[C], 827, 152-163(2006).

    [33] Tajima T, Brocklesby W, Mourou G. ICAN: the next laser powerhouse[J]. Optics and Photonics News, 24, 36-43(2013).

    [35] Daniault L, Bellanger S, le Dortz J et al. XCAN: a coherent amplification network of femtosecond fiber chirped-pulse amplifiers[J]. The European Physical Journal Special Topics, 224, 2609-2613(2015).

    [36] Heilmann A, le Dortz J, Daniault L et al. Coherent beam combining of seven fiber chirped-pulse amplifiers using an interferometric phase measurement[J]. Optics Express, 26, 31542-31553(2018).

    [37] Le Dortz J, Heilmann A, Antier M et al. Highly scalable femtosecond coherent beam combining demonstrated with 19 fibers[J]. Optics Letters, 42, 1887-1890(2017).

    [45] Zhou T, Sano T, Wilcox R. Coherent combination of ultrashort pulse beams using two diffractive optics[J]. Optics Letters, 42, 4422-4425(2017).

    [46] Hanna M, Guichard F, Zaouter Y et al. Coherent combination of ultrafast fiber amplifiers[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 49, 062004(2016).

    [47] Daniault L, Hanna M, Papadopoulos D N et al. Passive coherent beam combining of two femtosecond fiber chirped-pulse amplifiers[J]. Optics Letters, 36, 4023-4025(2011).

    [50] Daniault L, Hanna M, Lombard L et al. Impact of spectral phase mismatch on femtosecond coherent beam combining systems[J]. Optics Letters, 37, 650-652(2012).

    [51] Klenke A, Hädrich S, Kienel M et al. Coherent combination of spectrally broadened femtosecond pulses for nonlinear compression[J]. Optics Letters, 39, 3520-3522(2014).

    [52] Shestaev E, Hädrich S, Walther N et al. Carrier-envelope offset stable, coherently combined ytterbium-doped fiber CPA delivering 1 kW of average power[J]. Optics Letters, 45, 6350-6353(2020).

    [69] Ramirez L P, Hanna M, Bouwmans G et al. Coherent beam combining with an ultrafast multicore Yb-doped fiber amplifier[J]. Optics Express, 23, 5406-5416(2015).

    [71] Klenke A, Steinkopff A, Aleshire C et al. 500 W rod-type 4×4 multicore ultrafast fiber laser[J]. Optics Letters, 47, 345-348(2022).

    [73] Steinkopff A, Jauregui C, Aleshire C et al. Impact of thermo-optical effects in coherently combined multicore fiber amplifiers[J]. Optics Express, 28, 38093-38105(2020).

    [74] Liu B D, Huang Z M, Zhang F et al. Recent progress of temporal coherent combination of chirped pulses in fiber lasers[J]. High Power Laser and Particle Beams, 35, 230308(2023).

    [75] Yang K W, Hao Q, Zeng H P. Advances in ultrashort divided-pulse amplification systems (Invited)[J]. Infrared and Laser Engineering, 47, 0103004(2018).

    [77] Kong L J, Zhao L M, Lefrancois S et al. Generation of megawatt peak power picosecond pulses from a divided-pulse fiber amplifier[J]. Optics Letters, 37, 253-255(2012).

    [78] Zaouter Y, Guichard F, Daniault L et al. Femtosecond fiber chirped- and divided-pulse amplification system[J]. Optics Letters, 38, 106-108(2013).

    [79] Kienel M, Klenke A, Eidam T et al. Analysis of passively combined divided-pulse amplification as an energy-scaling concept[J]. Optics Express, 21, 29031-29042(2013).

    [80] Kienel M, Klenke A, Eidam T et al. Energy scaling of femtosecond amplifiers using actively controlled divided-pulse amplification[J]. Optics Letters, 39, 1049-1052(2014).

    [81] Stark H, Müller M, Kienel M et al. Electro-optically controlled divided-pulse amplification[J]. Optics Express, 25, 13494-13503(2017).

    [83] Zhang Z G. Coherent pulse stacking—an innovation beyond the chirped pulse amplification[J]. Laser & Optoelectronics Progress, 54, 120001(2017).

    [84] Breitkopf S, Wunderlich S, Eidam T et al. Extraction of enhanced, ultrashort laser pulses from a passive 10-MHz stack-and-dump cavity[J]. Applied Physics B, 122, 297(2016).

    [85] Zhou T, Ruppe J, Zhu C et al. Coherent pulse stacking amplification using low-finesse Gires-Tournois interferometers[J]. Optics Express, 23, 7442-7462(2015).

    [86] Ruppe J, Zhou T, Zhu C et al. Cascading of coherent pulse stacking using multiple gires-tournois interferometers[C], AW3A.4(2015).

    [87] Ruppe J, Chen S Y, Sheikhsofla M et al. Multiplexed coherent pulse stacking of 27 pulses in a 4+1 GTI resonator sequence[C], AM4A.6(2016).

    [88] Pei H Z, Ruppe J, Chen S Y et al. 10 mJ energy extraction from Yb-doped 85 µm core CCC fiber using coherent pulse stacking amplification of fs pulses[C], AW4A.4(2017).

    [89] Cooper L, Du Q, Wang D et al. Coherent temporal stacking of tens-of-fs laser pulses[C], SF1N.6(2023).

    [90] Sheikhsofla M, Ruppe J, Nees J et al. Turn-key and robust stabilization of scalable, N-GTI resonator based coherent pulse stacking systems[C], AM4A.4(2016).

    [91] Daniault L, Hanna M, Papadopoulos D N et al. High peak-power stretcher-free femtosecond fiber amplifier using passive spatio-temporal coherent combining[J]. Optics Express, 20, 21627-21634(2012).

    [98] Zhou P, Chang H X, Su R T et al. Research history and prospects of coherent beam combining of fiber lasers: from perspective of citations (invited)[J]. Chinese Journal of Lasers, 51, 0121002(2024).

    [99] Zhou P, Su R T, Ma Y X et al. Coherent beam combining of fiber lasers by actively phase control[J]. Acta Optica Sinica, 43, 1700001(2023).

    [107] Wang T, Li C, Liu Y et al. Coherent polarization beam combination of two ultrafast laser channels based on fiber stretcher phase locking[J]. Infrared and Laser Engineering, 52, 20220869(2023).

    [109] Chang H X, Jin K K, Zhang Y Q et al. Research on optical path and phase simultaneous control in coherent beam combining of broadband laser based on spectral filtering[J]. Acta Optica Sinica, 43, 1714008(2023).

    [113] Huang Z M, Li K H, Zhang F et al. Adaptive control of optical path and phase in a coherent array of four ultrashort pulsed fiber[J]. High Power Laser and Particle Beams, 34, 129902(2022).

    [115] Xie G H, Luo D P, Tang Z Q et al. 132 W 132 μJ femtosecond pulses from a coherently combined system of two rod-type photonic crystal fibers[J]. Photonics, 10, 1138(2023).

    [120] Wu Y F, Yang B W, Song Y R et al. Coherent combining 64 femtosecond pulses into mJ by delay line stacking of a fiber laser[C], ATh3A.4(2023).

    [121] Chen R Z, Chang G Q. Pre-chirp managed divided-pulse amplification using composite birefringent plates for pulse division and recombination: en route toward GW peak power[J]. Optics Express, 29, 6330-6343(2021).

    [122] Huang Z M, Geng D X, Liu B D et al. Realize the short pulse coherent beam combination in time domain based on the Gires‐Tournois interferometric cavity[J]. Chinese Journal of Lasers, 51, 0716003(2024).

    [128] Long J H, Jin K K, Chen Q et al. Generating the 1.5 kW mode-tunable fractional vortex beam by a coherent beam combining system[J]. Optics Letters, 48, 5021-5024(2023).

    [129] Li X, Zhou P. Special issue on laser beam combining technology published foreword[J]. High Power Laser and Particle Beams, 35, 041000(2023).

    [130] Zhou P, He B. Preface to column “Fiber Laser Beam Combining”[J]. Infrared and Laser Engineering, 47, 11(2018).

    [131] Huang P, Fang S B, Gao Y T et al. Simple method for simultaneous long-term stabilization of relative timing and carrier-envelope phase in waveform synthesis[J]. Applied Physics Letters, 115, 031102(2019).

    [132] Fang S B, Wei Z Y. Sub-optical-cycle coherent waveform synthesis[J]. Acta Optica Sinica, 39, 0126006(2019).

    [133] Su Y B, Fang S B, Wang S et al. Optimal generation of delay-controlled few-cycle pulses for high harmonic generation in solids[J]. Applied Physics Letters, 120, 121105(2022).

    [135] Peng C, Liang X Y, Liu R Q et al. Two-beam coherent combining based on Ti∶sapphire chirped-pulse amplification at the repetition of 1 Hz[J]. Optics Letters, 44, 4379-4382(2019).

    [137] Mu J, Li Z L, Jing F et al. Coherent combination of femtosecond pulses via non-collinear cross-correlation and far-field distribution[J]. Optics Letters, 41, 234-237(2016).

    [138] Li Z L, Zuo Y L, Wu Z H et al. Method of synchronization measurement via spatial-spectral interference in coherent combination of multi-channel ultra-short pulses[J]. Laser Physics, 27, 085001(2017).

    [139] Luo D P, Liu Y, Gu C L et al. 130 W, 180 fs ultrafast Yb-doped fiber frequency comb based on chirped-pulse fiber amplification[J]. Optics Express, 28, 4817-4824(2020).

    [140] Zhang Y, Wang J S, Teng H et al. Double-pass pre-chirp managed amplification with high gain and high average power[J]. Optics Letters, 46, 3115-3118(2021).

    [141] Gao C Y, Gui Y, Wang Y D et al. Monolithic Yb-doped femtosecond fiber laser with >300 W average power[J]. IEEE Photonics Journal, 15, 1501305(2023).

    [143] Ren B, Li C, Wang T et al. Thulium-doped all-PM fiber chirped pulse amplifier delivering 314 W average power[J]. High Power Laser Science and Engineering, 11, e73(2023).

    [144] Xiu H, Fan Y H, Lin W et al. 1200-W all polarization-maintaining fiber GHz-femtosecond-pulse laser with good beam quality[J]. Optics Express, 31, 41940-41951(2023).

    Tools

    Get Citation

    Copy Citation Text

    Can Li, Jiayi Zhang, Bo Ren, Hongxiang Chang, Tao Wang, Kun Guo, Yuqiu Zhang, Rongtao Su, Jinyong Leng, Jiangming Xu, Jian Wu, Pu Zhou. Integrated Development of Ultrafast Ultra‐Intense Laser Technology with Fiber Laser Coherent Beam Combination Technology (Invited)[J]. Chinese Journal of Lasers, 2024, 51(19): 1901006

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: laser devices and laser physics

    Received: Jun. 17, 2024

    Accepted: Aug. 5, 2024

    Published Online: Oct. 10, 2024

    The Author Email: Li Can (lc0616@163.com)

    DOI:10.3788/CJL240967

    CSTR:32183.14.CJL240967

    Topics