Chinese Optics Letters, Volume. 22, Issue 3, 032501(2024)
Photonic analog signal processing and neuromorphic computing [Invited]
[1] G. P. Agrawal. Fiber-Optic Communication Systems(2010).
[2] A. N. Tait, T. F. de Lima, P. Y. Ma et al. Blind source separation in the physical layer. Proceedings of 2018 52nd Annual Conference on Information Sciences and Systems (CISS), 1(2018).
[5] T. Shi, Y. Qi, J. Garofolo et al. Alignment simplified free space optical communication for radio spectrum coexistence. Proceedings of Frontiers in Optics + Laser Science 2022 (FIO, LS), JW5A.43(2022).
[8] K. Kravtsov, B. Wu, I. Glesk et al. Stealth transmission over a WDM network with detection based on an all-optical thresholder. Proceedings of IEEE/LEOS Annual Meeting, 480(2007).
[10] B. Wu, Z. Wang, B. J. Shastri et al. Two dimensional encrypted optical steganography based on amplified spontaneous emission noise. CLEO: 2013, AF1H.5(2013).
[11] B. Wu, Z. Wang, B. J. Shastri et al. Phase-mask covered optical steganography based on amplified spontaneous emission noise. IEEE Photonics Conference, 137(2013).
[13] C. Huang, S. Fujisawa, T. F. De Lima et al. Demonstration of photonic neural network for fiber nonlinearity compensation in long-haul transmission systems. Optical Fiber Communications Conference and Exhibition (OFC), 1(2020).
[15] P. R. Prucnal, B. J. Shastri. Neuromorphic Photonics(2017).
[16] A. N. Tait, M. A. Nahmias, Y. Tian et al. Photonic neuromorphic signal processing and computing. Nanophotonic Information Physics: Nano-Optics and Nanophotonics, 183(2014).
[17] A. N. Tait, M. A. Nahmias, B. J. Shastri et al. Balanced WDM weight banks for analog optical processing and networking in silicon. Proceedings of IEEE Summer Topicals Meeting Series (SUM), 110(2015).
[18] M. J. Filipovich, Z. Guo, B. A. Marquez et al. Training deep neural networks in situ with neuromorphic photonics. Proceedings of IEEE Photonics Conference (IPC), 1(2020).
[25] L. W. Couch. Digital and Analog Communication Systems(2013).
[27] B. J. Shastri, M. A. Nahmias, A. N. Tait et al. Exploring excitability in graphene for spike processing networks. 13th International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD), 83(2013).
[29] J. Garofolo, Y. Qi, T. Shi et al. Jamming-resilient LiDAR based on photonic blind-source separation. Proceedings of Frontiers in Optics + Laser Science 2022 (FIO, LS), JW5A.47(2022).
[33] D. Wang, B. Wang, C. Huang. Combining photonic blind source separation and genetic algorithm for mode-division-multiplexed fiber communications. IEEE Region 10 Conference (TENCON), 1(2022).
[37] B. J. Shastri, A. N. Tait, M. A. Nahmias et al. Spatiotemporal pattern recognition with cascadable graphene excitable lasers. IEEE Photonics Conference, 573(2014).
[38] J.-T. Chien. Source Separation and Machine Learning(2019).
[39] E. Biglieri, R. Calderbank, A. Constantinides et al. MIMO Wireless Communications(2007).
[40] J. Nocedal, S. J. Wright. Numerical Optimization(2006).
[49] G. Yun, M. Kavehrad. Spot-diffusing and fly-eye receivers for indoor infrared wireless communications. IEEE International Conference on Selected Topics in Wireless Communications, 262(1992).
[50] H. Hass, L. Yin, Y. Wang et al. What is Lifi?. J. Lightwave Technol., 34, 1533(2016).
[51] Q. Yu, Z. Zhao, L. Deng et al. Secure optical communication system based on ASE noise with no need for key distribution. Proceedings of 10th International Conference on Advanced Infocomm Technology (ICAIT), 47(2018).
[55] W. Shao, M. Cheng, L. Deng et al. Neural-network-enabled optical steganography based on bias tuning of electro-optical modulator. Proceedings of 2022 IEEE 14th International Conference on Advanced Infocomm Technology (ICAIT), 94(2022).
[59] J. Garofolo, B. Wu. All-analog current repeater for scalable photonic neural networks. Proceedings of Frontiers in Optics + Laser Science 2022, JW5A.30(2022).
[62] A. Lugnan, S. Aggarwal, F. Brückerhoff-Plückelmann et al. Performance enhancement via synaptic plasticity in an integrated photonic recurrent neural network with phase-change materials. Proceedings of 2023 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, jsiii_3_5(2023).
[67] H. Y. Cheng, M. BrightSky, S. Raoux et al. Atomic-level engineering of phase change material for novel fast-switching and high-endurance PCM for storage class memory application. IEEE International Electron Devices Meeting, 30.6.1(2013).
[68] H. Xiao, K. Rasul, R. Vollgraf. Fashion-MNIST: a novel image dataset for benchmarking machine learning algorithms(2017).
[69] Y. Jiang, W. Zhang, X. Liu et al. Physical aware clustering training method for integrated photonic convolution neural network with nonlinear distributed weights. Proceedings of 2022 Asia Communications and Photonics Conference (ACP), 1844(2022).
[71] E. Paolini, L. De Marinis, L. Maggiani et al. Accelerating pooling layers in photonic convolutional neural networks. 27th OptoElectronics and Communications Conference (OECC) and 2022 International Conference on Photonics in Switching and Computing (PSC), 1(2022).
[72] F. Ashtiani, M. B. On, D. Sanchez-Jacome et al. Photonic max-pooling for deep neural networks using a programmable photonic platform. Optical Fiber Communications Conference and Exhibition (OFC), M1J.6(2023).
Get Citation
Copy Citation Text
James Garofolo, Ben Wu, "Photonic analog signal processing and neuromorphic computing [Invited]," Chin. Opt. Lett. 22, 032501 (2024)
Category: Optoelectronics
Received: Aug. 1, 2023
Accepted: Nov. 7, 2023
Published Online: Mar. 22, 2024
The Author Email: Ben Wu (wub@rowan.edu)