Chinese Optics Letters, Volume. 19, Issue 6, 060013(2021)
Surface lattice resonances in dielectric metasurfaces for enhanced light-matter interaction [Invited]
[1] L. Novotny, N. V. Hulst. Antennas for light. Nat. Photon., 5, 83(2011).
[2] V. Giannini, A. I. Fern, S. C. Heck, S. A. Maier. Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters. Chem. Rev., 111, 3888(2011).
[3] J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, R. P. Van Duyne. Biosensing with plasmonic nanosensors. Nat. Mater., 7, 442(2008).
[4] S. Hao, G. Chen, C. Yang. Sensing using rare-earth-doped upconversion nano-particles. Theranostics, 3, 331(2013).
[5] X. Cai, A. Lee, Z. Ji, C. Huang, C. H. Chang, X. Wang, Y. P. Liao, T. Xia, R. Li. Reduction of pulmonary toxicity of metal oxide nanoparticles by phosphonate-based surface passivation. Part. Fibre Toxicol., 14, 1(2017).
[6] B. Sain, C. Meier, T. Zentgraf. Nonlinear optics in all-dielectric nanoantennas and metasurfaces: a review. Adv. Photon., 1, 024002(2019).
[7] A. Krasnok, M. Tymchenko, A. Alù. Nonlinear metasurfaces: a paradigm shift in nonlinear optics. Mater. Today, 21, 8(2018).
[8] K. Koshelev, Y. Tang, K. Li, D.-Y. Choi, G. Li, Y. Kivshar. Nonlinear metasurfaces governed by bound states in the continuum. ACS Photon., 6, 1639(2019).
[9] O. Reshef, M. Saad-Bin-Alam, M. J. Huttunen, G. Carlow, B. T. Sullivan, J.-M. Ménard, K. Dolgaleva, R. W. Boyd. Multiresonant high-Q plasmonic metasurfaces. Nano Lett., 19, 6429(2019).
[10] M. S. Bin-Alam, O. Reshef, Y. Mamchur, M. Z. Alam, G. Carlow, J. Upham, B. T. Sullivan, J.-M. Ménard, M. J. Huttunen, R. W. Boyd, K. Dolgaleva. Ultra-high-Q resonances in plasmonic metasurfaces. Nat. Commun., 12, 974(2021).
[11] J. Wang, A. Coillet, O. Demichel, Z. Wang, D. Rego, A. Bouhelier, P. Grelu, B. Cluzel. Saturable plasmonic metasurfaces for laser mode locking. Light: Sci. Appl., 9, 50(2020).
[12] E. Rahimi, R. Gordon. Nonlinear plasmonic metasurfaces. Adv. Opt. Mater., 6, 1800274(2018).
[13] G. W. Castellanos, P. Bai, J. G. Rivas. Lattice resonances in dielectric metasurfaces. J. Appl. Phys., 125, 213105(2019).
[14] S. Murai, G. W. Castellanos, T. V. Raziman, A. G. Curto, J. G. Rivas. Enhanced light emission by magnetic and electric resonances in dielectric metasurfaces. Adv. Opt. Mater., 8, 1902024(2020).
[15] S. Lepeshov, Y. Kivshar. Near-field coupling effects in Mie-resonant photonic structures and all-dielectric metasurfaces. ACS Photon., 5, 2888(2018).
[16] C. Zhang, Y. Xu, J. Liu, J. Li, J. Xiang, H. Li, J. Li, Q. Dai, S. Lan, A. E. Miroshnichenko. Lighting up silicon nanoparticles with Mie resonances. Nat. Commun., 9, 2964(2018).
[17] R. Weis, T. Gaylord. Lithium niobate: summary of physical properties and crystal structure. Appl. Phys. A, 37, 191(1985).
[18] Y. Kong, F. Bo, W. Wang, D. Zheng, H. Liu, G. Zhang, R. Rupp, J. Xu. Recent progress in lithium niobate: optical damage, defect simulation, and on-chip devices. Adv. Mater., 32, 1806452(2020).
[19] L. Arizmendi. Photonic applications of lithium niobate crystals. Phys. Status Solidi A, 201, 253(2004).
[20] G. Poberaj, H. Hu, W. Sohler, P. Günter. Lithium niobate on insulator (LNOI) for micro-photonic devices. Laser Photon. Rev., 6, 488(2012).
[21] A. Boes, B. Corcoran, L. Chang, J. Bowers, A. Mitchell. Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits. Laser Photon. Rev., 12, 1700256(2018).
[22] A. Honardoost, K. Abdelsalam, S. Fathpour. Rejuvenating a versatile photonic material: thin-film lithium niobate. Laser Photon. Rev., 14, 2000088(2020).
[23] R. Wolf, Y. Jia, S. Bonaus, C. Werner, S. Herr, I. Breunig, K. Buse, H. Zappe. Quasi-phase-matched nonlinear optical frequency conversion in on-chip whispering galleries. Optica, 5, 872(2018).
[24] J. Lin, F. Bo, Y. Cheng, J. Xu. Advances in on-chip photonic devices based on lithium niobate on insulator. Photon. Res., 8, 1910(2020).
[25] Y. Jia, L. Wang, F. Chen. Ion-cut lithium niobate on insulator technology: recent advances and perspectives. Appl. Phys. Rev., 8, 011307(2021).
[26] B. Gao, M. Ren, W. Wu, H. Hu, W. Cai, J. Xu. Lithium niobate metasurfaces. Laser Photon. Rev., 13, 1800312(2019).
[27] L. Carletti, C. Li, J. Sautter, I. Staude, C. De Angelis, T. Li, D. N. Neshev. Second harmonic generation in monolithic lithium niobate metasurfaces. Opt. Express, 27, 33391(2019).
[28] A. Fedotova, M. Younesi, J. Sautter, A. Vaskin, F. J. F. Löchner, M. Steinert, R. Geiss, T. Pertsch, I. Staude, F. Setzpfandt. Second-harmonic generation in resonant nonlinear metasurfaces based on lithium niobate. Nano Lett., 20, 8608(2020).
[29] L. Kang, H. Bao, D. H. Werner. Efficient second-harmonic generation in high Q-factor asymmetric lithium niobate metasurfaces. Opt. Lett., 46, 633(2021).
[30] Y. Jia, S. Wang, F. Chen. Femtosecond laser direct writing of flexibly configured waveguide geometries in optical crystals: fabrication and application. Opto-Electron. Adv., 3, 190042(2020).
[31] Y. Jia, F. Chen. Compact solid-state waveguide lasers operating in the pulsed regime: a review [Invited]. Chin. Opt. Lett., 17, 012302(2019).
[32] Y. Niu, L. Yang, D. Guo, Y. Chen, X. Li, G. Zhao, X. Hu. Efficient 671 nm red light generation in annealed proton-exchanged periodically poled LiNbO3 waveguides. Chin. Opt. Lett., 18, 111902(2020).
[33] Y. Liu, X. Yan, J. Wu, B. Zhu, Y. Chen, X. Chen. On-chip erbium-doped lithium niobate microcavity laser. Sci. China Phys. Mech. Astron., 64, 234262(2021).
[34] C. Zhang, Y. Lu, Y. Ni, M. Li, L. Mao, C. Liu, D. Zhang, H. Ming, P. Wang. Plasmonic lasing of nanocavity embedding in metallic nanoantenna array. Nano Lett., 15, 1382(2015).
[35] A. Habib, X. Zhu, U. I. Can, M. L. McLanahan, P. Zorlutuna, A. A. Yanik. Electro-plasmonic nanoantenna: a nonfluorescent optical probe for ultrasensitive label-free detection of electrophysiological signals. Sci. Adv., 5, eaav9786(2019).
[36] T. Wang, P. Li, D. N. Chigrin, A. J. Giles, F. J. Bezares, O. J. Glembocki, J. D. Caldwell, T. Taubner. Phonon-polaritonic bowtie nanoantennas: controlling infrared thermal radiation at the nanoscale. ACS Photon., 4, 1753(2017).
[37] Q. Le-Van, E. Zoethout, E. J. Geluk, M. Ramezani, M. Berghuis, J. G. Rivas. Enhanced quality factors of surface lattice resonances in plasmonic arrays of nanoparticles. Adv. Opt. Mater., 7, 1801451(2019).
[38] S.-D. Liu, P. Yue, S. Zhang, M. Wang, H. Dai, Y. Chen, Z.-Q. Nie, Y. Cui, J.-B. Han, H. Duan. Metasurfaces composed of plasmonic molecules: hybridization between parallel and orthogonal surface lattice resonances. Adv. Opt. Mater., 8, 1901109(2020).
[39] C. Cherqui, M. R. Bourgeois, D. Wang, G. C. Schatz. Plasmonic surface lattice resonances: theory and computation. Acc. Chem. Res., 52, 2548(2019).
[40] D. E. Zelmon, D. L. Small, D. Jundt. Infrared corrected Sellmeier coefficients for congruently grown lithium niobate and 5 mol.% magnesium oxide-doped lithium niobate. J. Opt. Soc. Am. B, 14, 3319(1997).
[41] I. H. Malitson. Interspecimen comparison of the refractive index of fused silica. J. Opt. Soc. Am., 55, 1205(1965).
[42] J. van de Groep, A. Polman. Designing dielectric resonators on substrates: combining magnetic and electric resonances. Opt. Express, 21, 26285(2013).
[43] K. Jiang, Y. Wang, C. Cai, H. Lin. Conversion of carbon dots from fluorescence to ultralong room-temperature phosphorescence by heating for security applications. Adv. Mater., 30, 1800783(2018).
Get Citation
Copy Citation Text
Yuechen Jia, Yingying Ren, Xingjuan Zhao, Feng Chen, "Surface lattice resonances in dielectric metasurfaces for enhanced light-matter interaction [Invited]," Chin. Opt. Lett. 19, 060013 (2021)
Category: Special Issue on Lithium Niobate Based Photonic Devices
Received: Mar. 19, 2021
Accepted: Apr. 30, 2021
Published Online: Jun. 16, 2021
The Author Email: Yuechen Jia (yuechen.jia@sdu.edu.cn), Feng Chen (drfchen@sdu.edu.cn)