Acta Optica Sinica, Volume. 44, Issue 9, 0900001(2024)
Design of Imaging and Display Systems Combining Freeform Optics and Holographic Optical Elements
[1] Yang T, Duan Y Z, Cheng D W et al. Freeform imaging optical system design: theories, development, and applications[J]. Acta Optica Sinica, 41, 0108001(2021).
[2] Cheng D W, Wang Q W, Liu Y et al. Design and manufacture AR head-mounted displays: a review and outlook[J]. Light: Advanced Manufacturing, 2, 336(2021).
[3] Xiong J H, Hsiang E L, He Z Q et al. Augmented reality and virtual reality displays: emerging technologies and future perspectives[J]. Light, Science & Applications, 10, 216(2021).
[4] Liu Z Y, Wang D Y, Gao H et al. Metasurface-enabled augmented reality display: a review[J]. Advanced Photonics, 5, 034001(2023).
[5] Kingslake R, Johnson R B[M]. Lens design fundamentals(2010).
[6] Conrady A E[M]. Applied optics and optical design(1991).
[7] Close D H. Holographic optical elements[J]. Optical Engineering, 14, 145402(1975).
[8] Li Y, Yang Q, Xiong J H et al. 3D displays in augmented and virtual realities with holographic optical elements[J]. Optics Express, 29, 42696-42712(2021).
[9] Sando Y, Satoh K, Barada D et al. Holographic augmented reality display with conical holographic optical element for wide viewing zone[J]. Light: Advanced Manufacturing, 3, 26-34(2022).
[10] Park J H, Lee B. Holographic techniques for augmented reality and virtual reality near-eye displays[J]. Light: Advanced Manufacturing, 3, 137-150(2022).
[11] Katz S, Kaplan N, Grossinger I. Using diffractive optical elements[J]. Laser Technik Journal, 15, 29-32(2018).
[12] Pang H, Yin S Y, Deng Q L et al. A novel method for the design of diffractive optical elements based on the Rayleigh-Sommerfeld integral[J]. Optics and Lasers in Engineering, 70, 38-44(2015).
[13] Xu Y, Wang C Y, Wang Y T et al. Review of design methods of diffractive optical element[J]. Acta Optica Sinica, 43, 0822007(2023).
[14] Poleshchuk A G, Korolkov V P, Nasyrov R K. Diffractive optical elements: fabrication and application[J]. Proceedings of SPIE, 9283, 928302(2014).
[15] Huo J Q, Hu Y, Cheng B P. History and application of diffractive optics technology[J]. Laser & Optoelectronics Progress, 60, 0700002(2023).
[16] Engelberg J, Levy U. The advantages of metalenses over diffractive lenses[J]. Nature Communications, 11, 1991(2020).
[17] Hu J, Bandyopadhyay S, Liu Y H et al. A review on metasurface: from principle to smart metadevices[J]. Frontiers in Physics, 8, 502(2021).
[18] Zhang S F, Zhou H Y, Liu B Y et al. Recent advances and prospects of optical metasurfaces[J]. ACS Photonics, 10, 2045-2063(2023).
[19] Degl'Innocenti R. Terahertz metasurface platform for modulation, holography, and encryption[J]. Advanced Photonics, 5, 020503(2023).
[20] Gao X Y, Song Q H. Recent advances in orbital angular momentum multiplexed metasurface holography[J]. Chinese Journal of Lasers, 50, 1813011(2023).
[21] Luo X H, Dong S Y, Wang Z S et al. Research progress of metasurface-based VR/AR display technology[J]. Laser & Optoelectronics Progress, 59, 2011002(2022).
[22] Xiong J H, Wu S T. Planar liquid crystal polarization optics for augmented reality and virtual reality: from fundamentals to applications[J]. eLight, 1, 3(2021).
[23] Yin K, Zhan T, Xiong J H et al. Liquid-crystal polarization volume gratings for near-eye displays[J]. Proceedings of SPIE, 11708, 1170804(2021).
[24] Yin K, Zhan T, Xiong J H et al. Polarization volume gratings for near-eye displays and novel photonic devices[J]. Crystals, 10, 561(2020).
[25] Xiong J H, Chen R, Wu S T. Device simulation of liquid crystal polarization gratings[J]. Optics Express, 27, 18102-18112(2019).
[26] Rolland J P, Davies M A, Suleski T J et al. Freeform optics for imaging[J]. Optica, 8, 161-176(2021).
[27] Fang F Z, Zhang X D, Weckenmann A et al. Manufacturing and measurement of freeform optics[J]. CIRP Annals, 62, 823-846(2013).
[28] Thompson K P, Rolland J P. Freeform optical surfaces: a revolution in imaging optical design[J]. Optics and Photonics News, 23, 30-35(2012).
[29] Yang T, Jin G F, Zhu J. Automated design of freeform imaging systems[J]. Light, Science & Applications, 6, e17081(2017).
[30] Zhu J, Yang T, Jin G F. Design method of surface contour for a freeform lens with wide linear field-of-view[J]. Optics Express, 21, 26080-26092(2013).
[31] Wang M H, Zhao G X, Shi Q R et al. Design methods and applications of freeform surface imaging optical systems[J]. Acta Optica Sinica, 43, 0822012(2023).
[32] Cheng D W, Chen H L, Wang Y T et al. Mathematical description and design methods of complex optical surfaces[J]. Acta Optica Sinica, 43, 0822008(2023).
[33] Zhu J, Hou W, Zhang X D et al. Design of a low F-number freeform off-axis three-mirror system with rectangular field-of-view[J]. Journal of Optics, 17, 015605(2015).
[34] Yang T, Zhu J, Jin G F. Compact freeform off-axis three-mirror imaging system based on the integration of primary and tertiary mirrors on one single surface[J]. Chinese Optics Letters, 14, 060801(2016).
[35] Wu W C, Jin G F, Zhu J. Optical design of the freeform reflective imaging system with wide rectangular FOV and low F-number[J]. Results in Physics, 15, 102688(2019).
[36] Cheng D W, Wang Y T, Hua H et al. Design of an optical see-through head-mounted display with a low f-number and large field of view using a freeform prism[J]. Applied Optics, 48, 2655-2668(2009).
[37] Cheng D W, Duan J X, Chen H L et al. Freeform OST-HMD system with large exit pupil diameter and vision correction capability[J]. Photonics Research, 10, 21-32(2022).
[38] Cheng D W, Wang Y T, Hua H et al. Design of a wide-angle, lightweight head-mounted display using free-form optics tiling[J]. Optics Letters, 36, 2098-2100(2011).
[39] Cheng D W, Wang Q F, Wang Y T et al. Lightweight spatial-multiplexed dual focal-plane head-mounted display using two freeform prisms[J]. Chinese Optics Letters, 11, 031201(2013).
[40] Wei L D, Li Y C, Jing J J et al. Design and fabrication of a compact off-axis see-through head-mounted display using a freeform surface[J]. Optics Express, 26, 8550-8565(2018).
[41] Zhang B Q, Tan Y L, Jin G F et al. Imaging spectrometer with single component of freeform concave grating[J]. Optics Letters, 46, 3412-3415(2021).
[42] Zhang B Q, Jin G F, Zhu J. Design method for freeform optical systems containing diffraction gratings[J]. Optics Express, 26, 20792-20801(2018).
[43] Liu Y X, Bauer A, Viard T et al. Freeform hyperspectral imager design in a CubeSat format[J]. Optics Express, 29, 35915-35928(2021).
[44] Liu Y, Li Y Q, Cao Z. Design method of off-axis extreme ultraviolet lithographic objective system with a direct tilt process[J]. Optical Engineering, 54, 075102(2015).
[45] Wu Y, Wang L P, Zhang X et al. Design method for an off-axis reflective anamorphic optical system with aberration balance and constraint control[J]. Applied Optics, 60, 4557-4566(2021).
[46] Mao S S, Li Y Q, Liu K et al. Optical design of high numerical aperture extreme ultraviolet lithography objective with freeform surfaces[J]. Infrared and Laser Engineering, 48, 0814002(2019).
[47] Kogelnik H. Coupled wave theory for thick hologram gratings[J]. The Bell System Technical Journal, 48, 2909-2947(1969).
[48] Akhmetov D M, Muslimov E R, Kharitonov D Y et al. Modeling and optimization of optical designs with composite holographic elements[J]. Journal of Optical Technology, 89, 633-641(2022).
[49] Kim S I, Choi C S, Morozov A et al. Slim coherent backlight unit for holographic display using full color holographic optical elements[J]. Optics Express, 25, 26781-26791(2017).
[50] Vorzobova N, Sokolov P. Properties of holographic elements based on periodic structures in a wide range of angles of incidence[J]. Photonics, 8, 562(2021).
[51] Xiong J H, Yin K, Li K et al. Holographic optical elements for augmented reality: principles, present status, and future perspectives[J]. Advanced Photonics Research, 2, 2000049(2021).
[52] Koreshev S N, Shevtsov M K. Optical systems of holographic collimator sights[J]. Journal of Optical Technology, 82, 592-597(2015).
[53] Kim J M, Choi B S, Choi Y S et al. Holographic optical elements recorded in silver halide sensitized gelatin emulsions. Part II. Reflection holographic optical elements[J]. Applied Optics, 41, 1522-1533(2002).
[54] Weiss V, Friesem A A. Storage mechanism of volume phase holograms recorded in silver halide emulsions[J]. Journal of the Optical Society of America A, 11, 2004-2010(1994).
[55] Wong K W, Yip W C, Cheng L M. Recording complex holograms on photoresist by using an ion-implantation method[J]. Applied Optics, 32, 4955-4959(1993).
[56] Beesley M J, Castledine J G. The use of photoresist as a holographic recording medium[J]. Applied Optics, 9, 2720-2724(1970).
[57] Zhu J H, Xu M, Guo Y K et al. Panchromatic chromate gelatin holographic recording material[J]. Journal of Optoelectronics·Laser, 18, 701-705(2007).
[58] Kim N, Hwang E S, Shin C W. Analysis of optical properties with photopolymers for holographic application[J]. Journal of the Optical Society of Korea, 10, 1-10(2006).
[59] Gleeson M R, Sheridan J T, Bruder F K et al. Comparison of a new self developing photopolymer with AA/PVA based photopolymer utilizing the NPDD model[J]. Optics Express, 19, 26325-26342(2011).
[60] Ortuño M, Fernández E, Gallego S et al. New photopolymer holographic recording material with sustainable design[J]. Optics Express, 15, 12425-12435(2007).
[61] Vorzobova N, Sokolov P. Application of photopolymer materials in holographic technologies[J]. Polymers, 11, 2020(2019).
[62] Moothanchery M, Naydenova I, Toal V. Studies of shrinkage as a result of holographic recording in acrylamide-based photopolymer film[J]. Applied Physics A, 104, 899-902(2011).
[63] Navarro-Fuster V, Ortuño M, Fernández R et al. Peristrophic multiplexed holograms recorded in a low toxicity photopolymer[J]. Optical Materials Express, 7, 133-147(2017).
[64] Jang C W, Lee C K, Jeong J et al. Recent progress in see-through three-dimensional displays using holographic optical elements[J]. Applied Optics, 55, A71-A85(2016).
[65] Guo B, Wang M X, Zhang D Q et al. Research progress of photopolymers for the preparation of holographic optical waveguide[J]. Acta Chimica Sinica, 81, 393-405(2023).
[66] Ramírez M G, Sirvent D, Morales-Vidal M et al. LED-cured reflection gratings stored in an acrylate-based photopolymer[J]. Polymers, 11, 632(2019).
[67] Galli P, Evans R A, Bertarelli C et al. Cyclic allylic sulfide based photopolymer for holographic recording showing high refractive index modulation[J]. Journal of Polymer Science, 59, 1399-1413(2021).
[68] Shen Z W, Weng Y S, Zhang Y N et al. Holographic recording performance of acrylate-based photopolymer under different preparation conditions for waveguide display[J]. Polymers, 13, 936(2021).
[69] Frederick H E. Hologram recording in photopolymerizable layers[P].
[70] Weber A M, Beresniewicz A. Recording films with a high refractive index modulation[P].
[71] Yang Z F, Zheng C F, Dong M Y. Photoinduced polymer holographic recording material and preparation method thereof[P].
[72] Liu Y Y, Liu H P, Wang B H et al. Expansion of axial dispersion in a photopolymer-based holographic lens and its improvement for measuring displacement[J]. Applied Optics, 59, 8279-8284(2020).
[73] Keshri S, Murphy K, Toal V et al. Development of a photopolymer holographic lens for collimation of light from a green light-emitting diode[J]. Applied Optics, 57, E163-E172(2018).
[74] Wang D, Liu C, Wang Q H. Method of chromatic aberration elimination in holographic display based on zoomable liquid lens[J]. Optics Express, 27, 10058-10066(2019).
[75] López A M, Atencia J, Tornos J et al. Partitioned-field uniaxial holographic lenses[J]. Applied Optics, 41, 1872-1881(2002).
[76] Collados M V, Arias I, Atencia J et al. Anamorphic white light Fourier processor with holographic lenses[J]. Applied Optics, 45, 8706-8713(2006).
[77] Sweatt W C. Describing holographic optical elements as lenses[J]. Journal of the Optical Society of America A, 67, 803-808(1977).
[78] Kedmi J, Friesem A A. Optimal holographic Fourier-transform lens[J]. Applied Optics, 23, 4015-4019(1984).
[79] Nakamura T, Kimura S, Takahashi K et al. Off-axis virtual-image display and camera by holographic mirror and blur compensation[J]. Optics Express, 26, 24864-24880(2018).
[80] Jivkova S T, Shurulinkov S, Kavehrad M. Holographic parabolic mirror as a receiver optical front end for wireless infrared communications: experimental study[J]. Applied Optics, 41, 5860-5865(2002).
[81] Sando Y, Satoh K, Barada D et al. Fast calculation method for parabolic-mirror-reflection holographic 3D display using wavefront segmentation[J]. Applied Optics, 59, 8211-8216(2020).
[82] Gusarova N I, Lushnikov D S, Markin V V et al. Fabricating holographic mirrors for a night-vision system[J]. Journal of Optical Technology, 78, 110-114(2011).
[83] Duban M, Lemaitre G R, Malina R F. Recording method for obtaining high-resolution holographic gratings through use of multimode deformable plane mirrors[J]. Applied Optics, 37, 3438-3439(1998).
[84] Duban M. Theory of spherical holographic gratings recorded by use of a multimode deformable mirror[J]. Applied Optics, 37, 7209-7213(1998).
[85] Yang S W, Sang X Z, Yu X B et al. 162-inch 3D light field display based on aspheric lens array and holographic functional screen[J]. Optics Express, 26, 33013-33021(2018).
[86] Lee S, Lee B, Cho J et al. Analysis and implementation of hologram lenses for see-through head-mounted display[J]. IEEE Photonics Technology Letters, 29, 82-85(2017).
[87] Shin D, Kim C, Koo G et al. Depth plane adaptive integral imaging system using a vari-focal liquid lens array for realizing augmented reality[J]. Optics Express, 28, 5602-5616(2020).
[88] Yu X B, Sang X Z, Gao X et al. Dynamic three-dimensional light-field display with large viewing angle based on compound lenticular lens array and multi-projectors[J]. Optics Express, 27, 16024-16031(2019).
[89] Kwon K C, Lim Y T, Shin C W et al. Enhanced depth-of-field of an integral imaging microscope using a bifocal holographic optical element-micro lens array[J]. Optics Letters, 42, 3209-3212(2017).
[90] Yu Y W, Chen C Y, Sun C C. Increase of signal-to-noise ratio of a collinear holographic storage system with reference modulated by a ring lens array[J]. Optics Letters, 35, 1130-1132(2010).
[91] Ganzherli N M, Maurer I A, Chernykh D F et al. Microlens rasters and holographic diffusers based on PFG-01 silver halide photographic material[J]. Journal of Optical Technology, 76, 384-387(2009).
[92] Wen J, Yan X P, Jiang X Y et al. Integral imaging based light field display with holographic diffusor: principles, potentials and restrictions[J]. Optics Express, 27, 27441-27458(2019).
[93] Gu C, Lien J R, Dai F et al. Diffraction properties of volume holographic diffusers[J]. Journal of the Optical Society of America A, 13, 1704-1711(1996).
[94] Piao M L, Kwon K C, Kang H J et al. Full-color holographic diffuser using time-scheduled iterative exposure[J]. Applied Optics, 54, 5252-5259(2015).
[95] Poutous M. Dammann gratings as phase diffusers in Fourier holography[J]. Applied Optics, 33, 6827-6832(1994).
[96] Draper C T, Bigler C M, Mann M S et al. Holographic waveguide head-up display with 2-D pupil expansion and longitudinal image magnification[J]. Applied Optics, 58, A251-A257(2019).
[97] Peng H C, Cheng D W, Han J et al. Design and fabrication of a holographic head-up display with asymmetric field of view[J]. Applied Optics, 53, H177-H185(2014).
[98] Mu C T, Lin W T, Chen C H. Zoomable head-up display with the integration of holographic and geometrical imaging[J]. Optics Express, 28, 35716-35723(2020).
[99] Lü Z L, Xu Y, Yang Y et al. Multiplane holographic augmented reality head-up display with a real-virtual dual mode and large eyebox[J]. Applied Optics, 61, 9962-9971(2022).
[100] Lü Z L, Li J N, Yang Y et al. 3D head-up display with a multiple extended depth of field based on integral imaging and holographic optical elements[J]. Optics Express, 31, 964-975(2023).
[101] Mukawa H, Akutsu K, Matsumura I et al. A full-color eyewear display using planar waveguides with reflection volume holograms[J]. Journal of the Society for Information Display, 17, 185-193(2009).
[102] Guo J J, Tu Y, Yang L L et al. Holographic waveguide display with a combined-grating in-coupler[J]. Applied Optics, 55, 9293-9298(2016).
[103] Yang L L, Tu Y, Shi Z Y et al. Efficient coupling to a waveguide by combined gratings in a holographic waveguide display system[J]. Applied Optics, 57, 10135-10145(2018).
[104] Mitasaki T, Senda M. Write-once recording for multilayered optical waveguide-type holographic cards[J]. Journal of the Optical Society of America A, 23, 659-663(2006).
[105] Piao J G, Li G, Piao M L et al. Full color holographic optical element fabrication for waveguide-type head mounted display using photopolymer[J]. Journal of the Optical Society of Korea, 17, 242-248(2013).
[106] Kim S B, Park J H. Optical see-through Maxwellian near-to-eye display with an enlarged eyebox[J]. Optics Letters, 43, 767-770(2018).
[107] Jang C W, Bang K, Li G et al. Holographic near-eye display with expanded eye-box[J]. ACM Transactions on Graphics, 37, 195(2018).
[108] Lee J S, Kim Y K, Won Y H. See-through display combined with holographic display and Maxwellian display using switchable holographic optical element based on liquid lens[J]. Optics Express, 26, 19341-19355(2018).
[109] Jo Y J, Yoo C Y, Bang K et al. Eye-box extended retinal projection type near-eye display with multiple independent viewpoints[J]. Applied Optics, 60, A268-A276(2021).
[110] Song W T, Li X, Zheng Y J et al. Full-color retinal-projection near-eye display using a multiplexing-encoding holographic method[J]. Optics Express, 29, 8098-8107(2021).
[111] Maimone A, Georgiou A, Kollin J S. Holographic near-eye displays for virtual and augmented reality[J]. ACM Transactions on Graphics, 36, 85(2017).
[112] Qin X J, Sang X Z, Li H et al. Binocular holographic display based on the holographic optical element[J]. Journal of the Optical Society of America A, 39, 2316-2324(2022).
[113] Yeh P, Gu C. 3D displays: toward holographic video displays of 3D images[J]. Chinese Optics Letters, 11, 010901(2013).
[114] Zaperty W, Kozacki T, Kujawińska M. Multi-SLM color holographic 3D display based on RGB spatial filter[J]. Journal of Display Technology, 12, 1724-1731(2016).
[115] Park J H, Hong K H, Lee B. Recent progress in three-dimensional information processing based on integral imaging[J]. Applied Optics, 48, H77-H94(2009).
[116] Park S G, Yeom J W, Jeong Y et al. Recent issues on integral imaging and its applications[J]. Journal of Information Display, 15, 37-46(2014).
[117] Yamaguchi M. Light-field and holographic three-dimensional displays[J]. Journal of the Optical Society of America A, 33, 2348-2364(2016).
[118] Maimone A, Wang J R. Holographic optics for thin and lightweight virtual reality[J]. ACM Transactions on Graphics, 39, 67(2020).
[119] Wissmann P, Oh S B, Barbastathis G. Simulation and optimization of volume holographic imaging systems in Zemax[J]. Optics Express, 16, 7516-7524(2008).
[120] Jang C W, Bang K, Moon S et al. Retinal 3D: augmented reality near-eye display via pupil-tracked light field projection on retina[J]. ACM Transactions on Graphics, 36, 190(2017).
[121] Shu T, Hu G Y, Wu R M et al. Compact full-color augmented reality near-eye display using freeform optics and a holographic optical combiner[J]. Optics Express, 30, 31714-31727(2022).
[122] Han J, Liu J, Yao X C et al. Portable waveguide display system with a large field of view by integrating freeform elements and volume holograms[J]. Optics Express, 23, 3534-3549(2015).
[123] Bang K, Jang C W, Lee B. Curved holographic optical elements and applications for curved see-through displays[J]. Journal of Information Display, 20, 9-23(2019).
[124] Ponomarev V, Belkin A, Bushmanov O et al. Compact holographic head-up display device[P].
[125] Belkin A, Lvova K I, Ponomarev V et al. Optical system of augmented reality head-up display device with improved visual ergonomics[P].
[127] Fairchild R C, Fienup J R. Computer-originated aspheric holographic optical elements[J]. Optical Engineering, 21, 128(1982).
[128] Amitai Y, Friesem A A, Weiss V. Designing holographic lenses with different recording and readout wavelengths[J]. Journal of the Optical Society of America A, 7, 80-86(1990).
[129] Yang T, Cheng D W, Wang Y T. Design method of nonsymmetric imaging systems consisting of multiple flat phase elements[J]. Optics Express, 26, 25347-25363(2018).
[130] Yang T, Wang Y D, Ni D W et al. Design of off-axis reflective imaging systems based on freeform holographic elements[J]. Optics Express, 30, 20117-20134(2022).
[131] Yang T, Gao L N, Cheng D W et al. Design method of imaging optical systems using confocal flat phase elements[J]. Optics Express, 30, 45895-45909(2022).
[132] Jang C W, Mercier O, Bang K et al. Design and fabrication of freeform holographic optical elements[J]. ACM Transactions on Graphics, 39, 184(2020).
[133] Wang Y D, Yang T, Ni D W et al. Design of an off-axis near-eye AR display system based on a full-color freeform holographic optical element[J]. Optics Letters, 48, 1288-1291(2023).
[134] Xiong J H, Zhong H Z, Cheng D W et al. Full degree-of-freedom polarization hologram by freeform exposure and inkjet printing[J]. PhotoniX, 4, 35(2023).
[135] Bruder F K, Fäcke T, Hagen R et al. Diffractive optics in large sizes: computer-generated holograms (CGH) based on Bayfol HX photopolymer[J]. Proceedings of SPIE, 9385, 93850C(2015).
[136] Wakunami K, Hsieh P Y, Oi R et al. Projection-type see-through holographic three-dimensional display[J]. Nature Communications, 7, 12954(2016).
[137] Jackin B J, Jorissen L, Oi R et al. Digitally designed holographic optical element for light field displays[J]. Optics Letters, 43, 3738-3741(2018).
[138] Hofmann J, Fiess R, Kick M et al. Extended holographic wave front printer setup employing two spatial light modulators[J]. Proceedings of SPIE, 11030, 110300N(2019).
[139] Jeong J, Lee C K, Lee B et al. Holographically printed freeform mirror array for augmented reality near-eye display[J]. IEEE Photonics Technology Letters, 32, 991-994(2020).
[140] Jeong J, Lee J, Yoo C et al. Holographically customized optical combiner for eye-box extended near-eye display[J]. Optics Express, 27, 38006-38018(2019).
[141] Fisher R L. Design methods for a holographic head-up display curved combiner[J]. Optical Engineering, 28, 286616(1989).
[142] Draper C T, Blanche P A. Holographic curved waveguide combiner for HUD/AR with 1-D pupil expansion[J]. Optics Express, 30, 2503-2516(2022).
[143] Blanche P A, Draper C T. Curved holographic waveguide combiner for HUD and AR display[C], DF2F.4(2021).
[144] Blanche P A J, Zhang T Y, Draper C T. Holographic curved waveguide combiner for AR/HUD with 2D pupil expansion[J]. Proceedings of SPIE, 12231, 1223108(2022).
[145] Zhang T Y, Draper C T, Blanche P A et al. 2D curved holographic waveguide combiner for augmented reality with pupil expansion[J]. Proceedings of SPIE, 12449, 124491Q(2023).
[146] Blanche P A, Zhang T Y, Draper C T. 2D pupil expansion in plastic curved holographic waveguide combiner for AR/HUD[C], M5A.1(2022).
[147] Mendes-Lopes J, Benítez P, Miñano J C et al. Simultaneous multiple surface design method for diffractive surfaces[J]. Optics Express, 24, 5584-5590(2016).
[148] Duan Y Z, Yang T, Cheng D W et al. Design method for nonsymmetric imaging optics consisting of freeform-surface-substrate phase elements[J]. Optics Express, 28, 1603-1620(2020).
[149] Kamali S M, Arbabi A, Arbabi E et al. Decoupling optical function and geometrical form using conformal flexible dielectric metasurfaces[J]. Nature Communications, 7, 11618(2016).
[150] Nikolov D K, Bauer A, Cheng F et al. Metaform optics: bridging nanophotonics and freeform optics[J]. Science Advances, 7, eabe5112(2021).
Get Citation
Copy Citation Text
Tong Yang, Yongdong Wang, Lü Xin, Dewen Cheng, Yongtian Wang. Design of Imaging and Display Systems Combining Freeform Optics and Holographic Optical Elements[J]. Acta Optica Sinica, 2024, 44(9): 0900001
Category: Reviews
Received: Nov. 24, 2023
Accepted: Dec. 27, 2023
Published Online: Apr. 18, 2024
The Author Email: Tong Yang (yangtong@bit.edu.cn)
CSTR:32393.14.AOS231830