Laser & Optoelectronics Progress, Volume. 61, Issue 5, 0506010(2024)
Artificial Intelligence Equalizer for Equivalent Time Sampling
[1] Sueyoshi A, Mishina K, Hisano D et al. Multi-stage adaptive equalization for all-optical-aggregated 16QAM signal[J]. IEICE Communications Express, 11, 183-188(2022).
[2] Howard S, Esslinger J, Wang R H W et al. Hyperspectral compressive wavefront sensing[J]. High Power Laser Science and Engineering, 11, e32(2023).
[3] Zhang J F, Chen W, Gao M Y et al. K-means-clustering-based fiber nonlinearity equalization techniques for 64-QAM coherent optical communication system[J]. Optics Express, 25, 27570-27580(2017).
[4] Hassan S, Tariq N, Naqvi R A et al. Performance evaluation of machine learning-based channel equalization techniques: new trends and challenges[J]. Journal of Sensors, 2022, 1-14(2022).
[5] Staffoli E, Mancinelli M, Bettotti P et al. Equalization of a 10 Gbps IMDD signal by a small silicon photonics time delayed neural network[J]. Photonics Research, 11, 878-886(2023).
[6] Wang F, Wang Y Y, Li W P et al. Echo state network based nonlinear equalization for 4.6 km 135 GHz D-band wireless transmission[J]. Journal of Lightwave Technology, 41, 1278-1285(2023).
[7] Wang H M, Wang Z, Lü F X et al. Design of high-speed SerDes adaptive equalizer based on DB-PAM4[J]. Electronic Components and Materials, 41, 871-879(2022).
[8] Jing N, Yao D Y, Wang Z B et al. High frequency signal reconstruction based on compressive sensing and equivalent-time sampling[J]. Optics and Precision Engineering, 30, 1240-1245(2022).
[9] Zang X X, Zhao J T, Lu Y F et al. Precision measurement system of high-frequency signal based on equivalent-time sampling[J]. Electronics, 11, 2098(2022).
[10] Balestrieri E, De Vito L, Lamonaca F et al. The jitter measurement ways: the instrumentation[J]. IEEE Instrumentation & Measurement Magazine, 25, 76-82(2022).
[11] Yamamoto S, Sasaki Y, Zhao Y J et al. Metallic ratio equivalent-time sampling and application to TDC linearity calibration[J]. IEEE Transactions on Device and Materials Reliability, 22, 142-153(2022).
[12] Li H T, Li B K, Lü Z J et al. Research on a step delay method in sequential equivalent time sampling (ETS)[J]. Review of Scientific Instruments, 93, 114708(2022).
[13] Wu F Y, Yang X H, Ma Y Y et al. Machine-learning guided optimization of laser pulses for direct-drive implosions[J]. High Power Laser Science and Engineering, 10, e12(2022).
[14] Jaeger H, Haas H. Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication[J]. Science, 304, 78-80(2004).
[15] Tanaka G, Yamane T, Héroux J B et al. Recent advances in physical reservoir computing: a review[J]. Neural Networks, 115, 100-123(2019).
[16] Larger L, Soriano M C, Brunner D et al. Photonic information processing beyond Turing: an optoelectronic implementation of reservoir computing[J]. Optics Express, 20, 3241-3249(2012).
[17] Budhiraja R, Kumar M, Das M K et al. A reservoir computing approach for forecasting and regenerating both dynamical and time-delay controlled financial system behavior[J]. PLoS One, 16, e0246737(2021).
[18] Büsing L, Schrauwen B, Legenstein R. Connectivity, dynamics, and memory in reservoir computing with binary and analog neurons[J]. Neural Computation, 22, 1272-1311(2010).
Get Citation
Copy Citation Text
Ning Jing, Junpeng Zhang, Minjuan Zhang. Artificial Intelligence Equalizer for Equivalent Time Sampling[J]. Laser & Optoelectronics Progress, 2024, 61(5): 0506010
Category: Fiber Optics and Optical Communications
Received: Jul. 31, 2023
Accepted: Oct. 17, 2023
Published Online: Mar. 5, 2024
The Author Email: Minjuan Zhang (zmj7745@163.com)
CSTR:32186.14.LOP231804