Acta Optica Sinica, Volume. 45, Issue 11, 1111004(2025)
A Deep Learning‑Based Method For Binocular Endoscopic Stereoscopic Imaging
Fig. 2. Simulation dataset. (a) Human heart model; (b) left image; (c) right image; (d) disparity ground truth of left image
Fig. 3. Augmentation of SCARED training dataset. (a) Left image; (b) right image; (c) disparity ground truth of left image
Fig. 4. Test results of SCARED test dataset. (a) Left image; (b) disparity ground truth of left image; (c) output of pre-trained network; (d) output of network trained on the SCARED training dataset without pre-training; (e) output of network trained on the SCARED training dataset with pre-training
Fig. 5. Test results in scenarios with weak textures and varying illumination conditions. The red boxes highlight weak texture regions, the green boxes highlight reflective regions, and the white boxes highlight low-illumination regions. (a1)(a2) Left image; (b1)(b2) disparity ground truth of left image; (c1)(c2) output of the network
Fig. 6. Test results of binocular endoscopic dataset. The red boxes highlight weak texture regions, the green boxes highlight reflective regions, and the white boxes highlight low-illumination regions. (a) Left image; (b) right image; (c) output of pre-trained network; (d) output of network trained on the SCARED training dataset without pre-training; (e) output of network trained on the SCARED training dataset with pre-training
|
|
|
|
Get Citation
Copy Citation Text
Yuanjue Ma, Jingyi Xu, Jun Yan, Liang Li. A Deep Learning‑Based Method For Binocular Endoscopic Stereoscopic Imaging[J]. Acta Optica Sinica, 2025, 45(11): 1111004
Category: Imaging Systems
Received: Jan. 14, 2025
Accepted: Apr. 14, 2025
Published Online: Jun. 24, 2025
The Author Email: Jun Yan (yanjun1619@mail.tsinghua.edu.cn), Liang Li (lliang@tsinghua.edu.cn)
CSTR:32393.14.AOS250491