Journal of Nantong University (Natural Science Edition), Volume. 24, Issue 2, 1(2025)

A survey on radio frequency fingerprint signal analysis and intelligent identification

YAN Gaoli, FU Xue, WANG Yu, and GUI Guan*
Author Affiliations
  • School of Communications and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
  • show less
    References(59)

    [1] [1] LAGHARI A A, WU K, LAGHARI R A, et al. A review and state of art of Internet of things (IoT)[J]. Archives of Computational Methods in Engineering, 2021, 29: 1395-1413.

    [2] [2] ZHANG J Q, LI G Y, MARSHALL A, et al. A new frontier for IoT security emerging from three decades of key generation relying on wireless channels[J]. IEEE Access, 2020, 8: 138406-138446.

    [4] [4] SOLTANIEH N, NOROUZI Y, YANG Y, et al. A review of radio frequency fingerprinting techniques[J]. IEEE Journal of Radio Frequency Identification, 2020, 4(3): 222-233.

    [8] [8] WAN H, WANG Q, FU X, et al. VC-SEI: robust variable-channel specific emitter identification method using semi-supervised domain adaptation [J]. IEEE Transactions on Wireless Communications, 2024, 23(12): 18228-18239.

    [9] [9] ABBAS S, ABU TALIB M, NASIR Q, et al. Radio frequency fingerprinting techniques for device identification: a survey [J]. International Journal of Information Security, 2024, 23(2): 1389-1427.

    [10] [10] LI H, TANG Y, LIN D, et al. A survey of few-shot learning for radio frequency fingerprint identification[M]//Artificial Intelligence for Communications and Networks. Cham: Springer International Publishing, 2021: 433-443.

    [12] [12] DANEV B, ZANETTI D, CAPKUN S. On physical-layer identification of wireless devices[J]. ACM Computing Surveys, 2012, 45(1): 1-29.

    [13] [13] SHEN G X, ZHANG J Q, MARSHALL A, et al. Towards scalable and channel-robust radio frequency fingerprint identification for LoRa[J]. IEEE Transactions on Information Forensics and Security, 2022, 17: 774-787.

    [14] [14] LIU Y X, WANG J, NIU S T, et al. ADS-B signals records for non-cryptographic identification and incremental learning[EB/OL](2021-05-08)[2024-12-10]. https://dx.doi.org/10.21227/1bxc-ke87.

    [15] [15] TU Y, LIN Y, ZHA H R, et al. Large-scale real-world radio signal recognition with deep learning[J]. Chinese Journal of Aeronautics, 2022, 35(9): 35-48.

    [16] [16] EZUMA M, ERDEN F, KUMAR ANJINAPPA C, et al. Detection and classification of UAVs using RF fingerprints in the presence of Wi-Fi and bluetooth interference [J]. IEEE Open Journal of the Communications Society, 2019,1: 60-76.

    [17] [17] UZUNDURUKAN E, DALVEREN Y, KARA A. A database for the radio frequency fingerprinting of bluetooth devices[J]. Data, 2020, 5(2): 55.

    [18] [18] REUS-MUNS G, JAISINGHANI D, SANKHE K, et al. Trust in 5G open RANs through machine learning: RF fingerprinting on the POWDER PAWR platform[C]//Procee-dings of the 2020 IEEE Global Communications Conference, December 7-11, 2020, Taipei, China. New York: IEEE Xplore, 2020: 1-6.

    [19] [19] SHI J X, PENG L N, FU H, et al. Robust RF fingerprint extraction based on cyclic shift characteristic[J]. IEEE Internet of Things Journal, 2023, 10(21): 19218-19233.

    [20] [20] ELMAGHBUB A, HAMDAOUI B, WONG W K. ADLID: adversarial disentanglement learning for wireless device fingerprinting temporal domain adaptation [C]//Proceedings of the IEEE International Conference on Communications, May 28-June 1, 2023, Rome, Italy. New York: IEEE Xplore, 2023: 6199-6204.

    [21] [21] ELMAGHBUB A, HAMDAOUI B, ELMAGHBUB A, et al. EPS: distinguishable IQ data representation for domain-adaptation learning of device fingerprints[EB/OL]. (2023-08-08)[2024-12-10]. https://doi.org/10.48550/arXiv.2308.04467.

    [22] [22] ur REHMAN S, SOWERBY K, COGHILL C. RF fingerprint extraction from the energy envelope of an instantaneous transient signal[C]//Proceedings of the 2012 Australian Communications Theory Workshop (AusCTW), January 30-February 2, 2012, Wellington, New Zealand. New York: IEEE Xplore, 2012: 90-95.

    [23] [23] HUANG L F, WU X P, ZHAO C D, et al. Identification of radio transmitters fingerprint based on curve fitting [C]//Proceedings of the 2013 IEEE International Conference on Signal Processing, Communication and Computing (ICSPCC 2013), August 5-8, 2013, Kunming, China. New York: IEEE Xplore, 2013: 1-5.

    [24] [24] YANG K, KANG J, JANG J, et al. Multimodal sparse representation-based classification scheme for RF finger-printing[J]. IEEE Communications Letters, 2019, 23(5): 867-870.

    [26] [26] DANEV B, CAPKUN S. Transient-based identification of wireless sensor nodes[C]//Proceedings of the 2009 International Conference on Information Processing in Sensor Networks, April 13-16, 2009, San Francisco, CA, USA. New York: IEEE Xplore, 2009: 25-36.

    [27] [27] DANEV B, HEYDT-BENJAMIN T S, CAPKUN S. Physical-layer identification of RFID devices[C]// Proceedings of the 18th USENIX Security Symposium. Montreal, Canada: USENIX Association, 2009: 199-214.

    [28] [28] SUSKI W C II, TEMPLE M A, MENDENHALL M J, et al. Radio frequency fingerprinting commercial communication devices to enhance electronic security[J]. International Journal of Electronic Security and Digital Forensics, 2008, 1(3): 301.

    [29] [29] SUSKI W C II, TEMPLE M A, MENDENHALL M J, et al. Using spectral fingerprints to improve wireless network security[C]//Proceedings of the 2008 IEEE Global Telecommunications Conference, November 30-December 4, 2008, New Orleans, LO. New York: IEEE Xplore, 2008: 1-5.

    [30] [30] BALDINI G, GENTILE C. Transient-based Internet of Things emitter identification using convolutional neural networks and optimized general linear chirplet transform[J]. IEEE Communications Letters, 2020, 24(7): 1482-1486.

    [32] [32] SATIJA U, TRIVEDI N, BISWAL G, et al. Specific emitter identification based on variational mode decomposition and spectral features in single hop and relaying scenarios[J]. IEEE Transactions on Information Forensics and Security, 2019, 14(3): 581-591.

    [33] [33] REN D F, ZHANG T. Specific emitter identification based on intrinsic time-scale-decomposition and image texture feature[C]//Proceedings of the 2017 IEEE 9th International Conference on Communication Software and Networks(ICCSN), May 6-8, 2017, Guangzhou, China. New York: IEEE Xplore, 2017: 1302-1307.

    [34] [34] TIAN Q, LIN Y, GUO X H, et al. New security mechanisms of high-reliability IoT communication based on radio frequency fingerprint[J]. IEEE Internet of Things Journal, 2019, 6(5): 7980-7987.

    [36] [36] ZHANG J W, WANG F G, DOBRE O A, et al. Specific emitter identification via Hilbert-Huang transform in single-hop and relaying scenarios[J]. IEEE Transactions on Information Forensics and Security, 2016, 11(6): 1192-1205.

    [37] [37] PATEL H. Non-parametric feature generation for RF-fingerprinting on ZigBee devices[C]//Proceedings of the 2015 IEEE Symposium on Computational Intelligence for Security and Defense Applications (CISDA), May 26-28, 2015, Verona, NY, USA. New York: IEEE Xplore, 2015: 1-5.

    [38] [38] HAO P, WANG X B, BEHNAD A. Relay authentication by exploiting I/Q imbalance in amplify-and-forward system[C]//Proceedings of the 2014 IEEE Global Communications Conference, December 8-12, 2014, Austin, TX, USA. New York: IEEE Xplore, 2014: 613-618.

    [39] [39] ZHUO F, HUANG Y L, CHEN J. Radio frequency fingerprint extraction of radio emitter based on I/Q imbalance[J]. Procedia Computer Science, 2017, 107: 472-477.

    [42] [42] PENG L N, HU A Q, ZHANG J Q, et al. Design of a hybrid RF fingerprint extraction and device classification scheme[J]. IEEE Internet of Things Journal, 2019, 6(1): 349-360.

    [43] [43] SHI Y, JENSEN M A. Improved radiometric identification of wireless devices using MIMO transmission[J]. IEEE Transactions on Information Forensics and Security, 2011, 6(4): 1346-1354.

    [44] [44] RIYAZ S, SANKHE K, IOANNIDIS S, et al. Deep learning convolutional neural networks for radio identification[J]. IEEE Communications Magazine, 2018, 56(9): 146-152.

    [45] [45] YAN G L, CAI Z X, LIU Y C, et al. Intelligent specific emitter identification using complex-valued convolutional neural network[C]//Proceedings of the 2023 IEEE 23rd International Conference on Communication Technology(ICCT), October 20-22, 2023, Wuxi, China. New York: IEEE, 2023: 1259-1263.

    [46] [46] DING L D, WANG S L, WANG F G, et al. Specific emitter identification via convolutional neural networks[J]. IEEE Communications Letters, 2018, 22(12): 2591-2594.

    [47] [47] BALDINI G, GENTILE C, GIULIANI R, et al. Comparison of techniques for radiometric identification based on deep convolutional neural networks[J]. Electronics Letters, 2019, 55(2): 90-92.

    [48] [48] PAN Y W, YANG S H, PENG H, et al. Specific emitter identification based on deep residual networks [J]. IEEE Access, 2019, 7: 54425-54434.

    [49] [49] PENG L N, ZHANG J Q, LIU M, et al. Deep learning based RF fingerprint identification using differential constellation trace figure[J]. IEEE Transactions on Vehicular Technology, 2020, 69(1): 1091-1095.

    [50] [50] LIN Y, TU Y, DOU Z, et al. Contour stella image and deep learning for signal recognition in the physical layer[J]. IEEE Transactions on Cognitive Communications and Networking, 2021, 7(1): 34-46.

    [52] [52] SHEN G X, ZHANG J Q, MARSHALL A, et al. Radio frequency fingerprint identification for LoRa using deep learning[J]. IEEE Journal on Selected Areas in Communications, 2021, 39(8): 2604-2616.

    [53] [53] SHEN G X, ZHANG J Q, MARSHALL A, et al. Radio frequency fingerprint identification for security in low-cost IoT devices [C]//Proceedings of the 2021 55th Asilomar Conference on Signals, Systems, and Computers, October 31-November 3, 2021, Pacific Grove, CA, USA. New York: IEEE Xplore, 2021: 309-313.

    [54] [54] GRITSENKO A, WANG Z F, JIAN T, et al. Finding a 'new' needle in the haystack: unseen radio detection in large populations using deep learning [C]//Proceedings of the 2019 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN), November 11-14, 2019, Newark, NJ, USA. New York: IEEE Xplore, 2019: 1-10.

    [55] [55] YIN L J, FU X, SHI S N, et al. Few-shot domain adaption-based specific emitter identification under varying modulation[C]//Proceedings of the 2023 IEEE 23rd International Conference on Communication Technology (ICCT), October 20-22, 2023, Wuxi, China. New York: IEEE Xplore, 2023: 1439-1443.

    [56] [56] GUO Y J, ZHANG J Q, PETER HONG Y W. Deep learning-enhanced physical layer authentication for mobile devices[C]//Proceedings of the 2023 IEEE Global Communications Conference, December 4-8, 2023, Kuala Lumpur, Malaysia. New York: IEEE Xplore, 2023: 826-831.

    [57] [57] CAI Z X, WANG Y, JIANG Q, et al. Toward intelligent lightweight and efficient UAV identification with RF finger-printing[J]. IEEE Internet of Things Journal, 2024, 11(15): 26329-26339.

    [58] [58] HUA M Y, ZHANG Y B, SUN J L, et al. Specific emitter identification using adaptive signal feature embedded knowledge graph[J]. IEEE Internet of Things Journal, 2024, 11(3): 4722-4734.

    [59] [59] LIU C, FU X, WANG Y, et al. Overcoming data limitations: a few-shot specific emitter identification method using self-supervised learning and adversarial augmentation [J]. IEEE Transactions on Information Forensics and Security, 2023, 19: 500-513.

    [60] [60] WANG Y, GUI G, LIN Y, et al. Few-shot specific emitter identification via deep metric ensemble learning[J]. IEEE Internet of Things Journal, 2022, 9(24): 24980-24994.

    [61] [61] XU L, FU X, WANG Y, et al. Enhanced few-shot specific emitter identification via phase shift prediction and decoupling[J]. IEEE Transactions on Cognitive Communications and Networking, 2025, 11(1): 145-155.

    [62] [62] FU X, WANG Y, LIN Y, et al. Toward robust open-set radiofrequency signal identification in Internet of Things using hypersphere manifold embedding[J]. IEEE Internet of Things Journal, 2024, 11(24): 41235-41247.

    [63] [63] FU X, SHI S N, WANG Y, et al. Semi-supervised specific emitter identification via dual consistency regularization[J]. IEEE Internet of Things Journal, 2023, 10 (21): 19257-19269.

    [64] [64] PENG Y, HOU C B, ZHANG Y B, et al. Supervised contrastive learning for RFF identification with limited samples[J]. IEEE Internet of Things Journal, 2023, 10 (19): 17293-17306.

    [65] [65] ZHANG X X, ZHAO H T, ZHU H B, et al. NAS-AMR: neural architecture search- based automatic modulation recognition for integrated sensing and communication systems[J]. IEEE Transactions on Cognitive Communications and Networking, 2022, 8(3): 1374-1386.

    [66] [66] TU Y, LIN Y, ZHA H R, et al. Large-scale real-world radio signal recognition with deep learning [J]. Chinese Journal of Aeronautics, 2022, 35(9): 35-48.

    [67] [67] ZHENG S L, ZHOU X Y, ZHANG L X, et al. Toward next-generation signal intelligence: a hybrid knowledge and data-driven deep learning frame work for radio signal classification[J]. IEEE Transactions on Cognitive Communications and Networking, 2023, 9(3): 564-579.

    [70] [70] YAO Z S, PENG Y, WANG Y, et al. A novel radio frequency fingerprint concealment method based on IQ imbalance compensation and digital pre-distortion [J]. IEEE Transactions on Information Forensics and Security, 2024, 19: 7349-7361.

    [71] [71] REHMAN S U, SOWERBY K W, ALAM S, et al. Radio frequency fingerprinting and its challenges[C]//Proceedings of the 2014 IEEE Conference on Communications and Network Security, October 29-31, 2014, San Francisco, CA, USA. New York: IEEE Xplore, 2014: 496-497.

    [72] [72] ZHANG J Q, WOODS R, SANDELL M, et al. Radio frequency fingerprint identification for narrowband systems, modelling and classification[J]. IEEE Transactions on Information Forensics and Security, 2021, 16: 3974-3987.

    Tools

    Get Citation

    Copy Citation Text

    YAN Gaoli, FU Xue, WANG Yu, GUI Guan. A survey on radio frequency fingerprint signal analysis and intelligent identification[J]. Journal of Nantong University (Natural Science Edition), 2025, 24(2): 1

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Jan. 5, 2025

    Accepted: Aug. 25, 2025

    Published Online: Aug. 25, 2025

    The Author Email: GUI Guan (guiguan@njupt.edu.cn)

    DOI:10.12194/j.ntu.20250105001

    Topics