Chinese Optics Letters, Volume. 19, Issue 11, 112202(2021)

Optical design of a compact and high-transmittance compressive sensing imaging system enabled by freeform optics

Dewen Cheng1,2, Hailong Chen1,2, Tong Yang1,2,3、*, Jun Ke1, Yang Li1,2, and Yongtian Wang1,2,3
Author Affiliations
  • 1School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
  • 2Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
  • 3Beijing Key Laboratory of Advanced Optical Remote Sensing Technology, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
  • show less
    References(26)

    [2] G. Barbastathis, A. Ozcan, G. Situ. On the use of deep learning for computational imaging. Optica, 6, 921(2019).

    [3] R. Willett, R. Marcia, J. Nichols. Compressed sensing for practical optical imaging systems: a tutorial. Opt. Eng., 50, 072601(2011).

    [4] A. Mahalanobis, R. Shilling, R. Murphy, R. Muise. Recent results of medium wave infrared compressive sensing. Appl. Opt., 53, 8060(2014).

    [5] H. Chen, M. S. Asif, A. C. Sankaranarayanan, A. Veeraraghavan. FPA-CS: focal plane array-based compressive imaging in short-wave infrared. 2015 IEEE Conference on Computer Vision and Pattern Recoginition, 2358(2015).

    [6] K. P. Thompson, J. P. Rolland. Freeform optical surfaces: a revolution in imaging optical design. Opt. Photon. News, 23, 30(2012).

    [7] S. Wills. Freeform optics: notes from the revolution. Opt. Photon. News, 28, 34(2017).

    [8] D. Cheng, Y. Wang, H. Hua, M. M. Talha. Design of an optical see-through head-mounted display with a low f-number and large field of view using a freeform prism. Appl. Opt., 48, 2655(2009).

    [9] Y. Deng, G. Jin, J. Zhu. Design method for freeform reflective-imaging systems with low surface-figure-error sensitivity. Chin. Opt. Lett., 17, 092201(2019).

    [10] A. Bauer, E. M. Schiesser, J. P. Rolland. Starting geometry creation and design method for freeform optics. Nat. Commun., 9, 1756(2018).

    [11] A. Bauer, M. Pesch, J. Muschaweck, F. Leupelt, J. P. Rolland. All-reflective electronic viewfinder enabled by freeform optics. Opt. Express, 27, 30597(2019).

    [12] T. P. Johnson, J. Sasian. Zernike monomials in wide field of view optical designs. Appl. Opt., 59, G146(2020).

    [13] Y. Nie, R. Mohedano, P. Benítez, J. Chaves, J. C. Miñano, H. Thienpont, F. Duerr. Multifield direct design method for ultrashort throw ratio projection optics with two tailored mirrors. Appl. Opt., 55, 3794(2016).

    [14] R. Wu, Z. Feng, Z. Zheng, R. Liang, P. Benítez, J. C. Minano, F. Duerr. Design of freeform illumination optics. Laser Photon. Rev., 12, 1700310(2018).

    [15] R. Wu, L. Yang, Z. Ding, L. Zhao, D. Wang, K. Li, F. Wu, Y. Li, Z. Zheng, X. Liu. Precise light control in highly tilted geometry by freeform illumination optics. Opt. Lett., 44, 2887(2019).

    [16] Y. Zhong, H. Gross. Improvement of Scheimpflug systems with freeform surfaces. Appl. Opt., 57, 1482(2018).

    [17] M. Beier, J. Hartung, T. Peschel, C. Damm, A. Gebhardt, S. Scheiding, D. Stumpf, U. D. Zeitner, S. Risse, R. Eberhardt, A. Tünnermann. Development, fabrication, and testing of an anamorphic imaging snap-together freeform telescope. Appl. Opt., 54, 3530(2015).

    [18] A. Wilson, H. Hua. Design and demonstration of a vari-focal optical see-through head-mounted display using freeform Alvarez lenses. Opt. Express, 27, 15627(2019).

    [19] P. Benitez, J. C. Miñano, P. Zamora, D. Grabovičkić, M. Buljan, B. Narasimhan, J. Gorospe, J. López, M. Nikolić, E. Sánchez, C. Lastres, R. Mohedano. Advanced freeform optics enabling ultra-compact VR headsets. Proc. SPIE, 10335, 103350I(2017).

    [20] L. Feng, J. Zhou, L. Wei, X. He, Y. Li, J. Jing, B. Xiangli. Design of a compact wide-spectrum double-channel prism imaging spectrometer with freeform surface. Appl. Opt., 57, 9512(2018).

    [21] J. Ke, E. Y. Lam. Object reconstruction in block-based compressive imaging. Opt. Express, 20, 22102(2012).

    [22] L. Gan. Block-compressed sensing of natural images. IEEE 15th International Conference on Digital Signal Processing, 403(2007).

    [23] P. L. McCarley, M. A. Massie, J. P. Curzan. Foveating infrared image sensors. Proc. SPIE, 6660, 666002(2007).

    [24] J. P. Dumas, M. A. Lodhi, W. U. Bajwa, M. C. Pierce. Computational imaging with a highly parallel image-plane-coded architecture: challenges and solutions. Opt. Express, 24, 6145(2016).

    [25] E. J. Candes. The restricted isometry property and its implications for compressed sensing. Cr. Math., 346, 589(2008).

    [26] (2018).

    CLP Journals

    [1] Dewen Cheng, Jiaxi Duan, Hailong Chen, He Wang, Danyang Li, Qiwei Wang, Qichao Hou, Tong Yang, Weihong Hou, Donghua Wang, Xiaoyu Chi, Bin Jiang, Yongtian Wang, "Freeform OST-HMD system with large exit pupil diameter and vision correction capability," Photonics Res. 10, 21 (2022)

    Cited By
    Tools

    Get Citation

    Copy Citation Text

    Dewen Cheng, Hailong Chen, Tong Yang, Jun Ke, Yang Li, Yongtian Wang, "Optical design of a compact and high-transmittance compressive sensing imaging system enabled by freeform optics," Chin. Opt. Lett. 19, 112202 (2021)

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Optical Design and Fabrication

    Received: Mar. 1, 2021

    Accepted: Apr. 24, 2021

    Posted: Apr. 26, 2021

    Published Online: Sep. 1, 2021

    The Author Email: Tong Yang (yangtong@bit.edu.cn)

    DOI:10.3788/COL202119.112202

    Topics