Optics and Precision Engineering, Volume. 31, Issue 15, 2295(2023)
Review of deep learning-based algorithms for ship target detection from remote sensing images
[1] [1] 1徐芳, 刘晶红, 孙辉, 等. 光学遥感图像海面船舶目标检测技术进展[J]. 光学 精密工程, 2021, 29(4):916-931. doi: 10.37188/OPE.2020.0419XUF, LIUJ H, SUNH, et al. Research progress on vessel detection using optical remote sensing image[J]. Opt. Precision Eng., 2021, 29(4):916-931.(in Chinese). doi: 10.37188/OPE.2020.0419
[2] [2] 2王彦情, 马雷, 田原. 光学遥感图像舰船目标检测与识别综述[J]. 自动化学报, 2011, 37(9): 1029-1039. doi: 10.3724/SP.J.1004.2011.01029WANGY Q, MAL, TIANY. Overview of ship target detection and recognition in optical remote sensing images[J]. Acta Automatica Sinica, 2011, 37(9): 1029-1039.(in Chinese). doi: 10.3724/SP.J.1004.2011.01029
[3] LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 60, 91-110(2004).
[4] DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C], 886-893(2005).
[5] [5] 5范丽丽, 赵宏伟, 赵浩宇, 等. 基于深度卷积神经网络的目标检测研究综述[J]. 光学 精密工程, 2020, 28(5): 1152-1164.FANL L, ZHAOH W, ZHAOH Y, et al. Survey of target detection based on deep convolutional neural networks[J]. Opt. Precision Eng., 2020, 28(5): 1152-1164.(in Chinese)
[6] GIRSHICK R, DONAHUE J, DARRELL T et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C], 580-587(2014).
[7] EVERINGHAM M, ESLAMI S M, GOOL L et al. The pascal visual object classes challenge: a retrospective[J]. International Journal of Computer Vision, 111, 98-136(2015).
[8] HE K M, ZHANG X Y, REN S Q et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37, 1904-1916(2015).
[9] EVERINGHAM M, GOOL L, WILLIAMS C K et al. The pascal visual object classes (VOC) challenge[J]. International Journal of Computer Vision, 88, 303-338(2010).
[10] GIRSHICK R. Fast R-CNN[C], 1440-1448(2016).
[12] REN S Q, HE K M, GIRSHICK R et al. Faster R-CNN: towards real-time object detection with region proposal networks[C], 91-99(2015).
[13] REDMON J, DIVVALA S, GIRSHICK R et al. You only look once: unified, real-time object detection[C], 779-788(2016).
[14] LIU W, ANGUELOV D, ERHAN D et al.
[15] REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C], 6517-6525(2017).
[17] LIN T Y, MAIRE M, BELONGIE S et al.
[20] LAW H, DENG J.
[22] ZHU C C, HE Y H, SAVVIDES M. Feature selective anchor-free module for single-shot object detection[C], 840-849(2020).
[23] TIAN Z, SHEN C H, CHEN H et al. FCOS: fully convolutional one-stage object detection[C], 9626-9635.
[24] [24] 24杨阳. 基于深度学习的遥感图像舰船目标检测与分类识别[D]. 武汉: 华中科技大学,2019.YANGY. Ship Target Detection and Classification in Remote Sensing Images Based on Deep Learning[D]. Wuhan: Huazhong University of Science and Technology,2019. (in Chinese)
[25] NINA W, CONDORI W, MACHACA V et al. Small Ship Detection on Optical Satellite Imagery with YOLO and YOLT[M]. Advances in Intelligent Systems and Computing, 664-677(2020).
[26] [26] 26王楠. 基于深度学习的舰船检测识别[D]. 哈尔滨: 哈尔滨工业大学,2019.WANGN. Ship Detection and Recognition Based on Deep Learning[D]. Harbin: Harbin Institute of Technology,2019. (in Chinese)
[27] AL-SAAD M, ABURAED N, PANTHAKKAN A et al. Airbus ship detection from satellite imagery using frequency domain learning[C], 11862, 279-285(2021).
[28] LI Q P, MOU L C, LIU Q J et al. HSF-net: multiscale deep feature embedding for ship detection in optical remote sensing imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 56, 7147-7161(2018).
[29] LIU S, KONG W, CHEN X et al. Multi-scale ship detection algorithm based on a lightweight neural network for spaceborne SAR images[J]. Remote Sensing, 14, 1149(2022).
[30] HUANG G, LIU Z, VAN DER MAATEN L et al. Densely connected convolutional networks[C], 2261-2269(2017).
[31] JIAO J, ZHANG Y, SUN H et al. A densely connected end-to-end neural network for multiscale and multiscene SAR ship detection[J]. IEEE Access, 6, 20881-20892(2018).
[32] TIAN L, CAO Y, HE B K et al. Image enhancement driven by object characteristics and dense feature reuse network for ship target detection in remote sensing imagery[J]. Remote Sensing, 13, 1327(2021).
[33] LIN T Y, DOLLÁR P, GIRSHICK R et al. Feature pyramid networks for object detection[C], 936-944(2017).
[34] LIU S, QI L, QIN H F et al. Path aggregation network for instance segmentation[C], 8759-8768(2018).
[36] CHEN L C, PAPANDREOU G, KOKKINOS I et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40, 834-848(2018).
[37] ZHANG T W, ZHANG X L, KE X. Quad-FPN: a novel quad feature pyramid network for SAR ship detection[J]. Remote Sensing, 13, 2771(2021).
[38] QING Y H, LIU W Y, FENG L Y et al. Improved YOLO network for free-angle remote sensing target detection[J]. Remote Sensing, 13, 2171(2021).
[39] CHEN C, HE C, HU C H et al. A deep neural network based on an attention mechanism for SAR ship detection in multiscale and complex scenarios[J]. IEEE Access, 7, 104848-104863(2019).
[40] ZHANG X H, WANG H P, XU C A et al. A lightweight feature optimizing network for ship detection in SAR image[J]. IEEE Access, 7, 141662-141678(2019).
[41] QU Z F, ZHU F Z, QI C X. Remote sensing image target detection: improvement of the YOLOv3 model with auxiliary networks[J]. Remote Sensing, 13, 3908(2021).
[42] CHENG G, LANG C B, WU M X et al. Feature enhancement network for object detection in optical remote sensing images[J]. Journal of Remote Sensing, 2021, 9805389(2021).
[43] CHENG G, ZHOU P C, HAN J W. Learning rotation-invariant convolutional neural networks for object detection in VHR optical remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 54, 7405-7415(2016).
[44] LI K, CHENG G, BU S H et al. Rotation-insensitive and context-augmented object detection in remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 56, 2337-2348(2018).
[45] HONG Z H, YANG T, TONG X H et al. Multi-scale ship detection from SAR and optical imagery via A more accurate YOLOv3[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 6083-6101(2021).
[46] BODLA N, SINGH B, CHELLAPPA R et al. Soft-NMS-improving object detection with one line of code[C], 5562-5570(2017).
[47] YANG X, SUN H, FU K et al. Automatic ship detection in remote sensing images from google earth of complex scenes based on multiscale rotation dense feature pyramid networks[J]. Remote Sensing, 10, 132(2018).
[48] SEO J, JEON S et al. RBox-CNN: rotated bounding box based CNN for ship detection in remote sensing image[C], 420-423(2018).
[49] [49] 49黎经元. 不同分辨率可见光遥感图像的舰船目标检测识别方法研究[D]. 杭州: 浙江大学,2021. doi: 10.1016/j.cja.2020.09.022LIJ Y. Research on Detection and Recognition of Ship Targets from Visible Remote Sensing Images with Different Resolutions[D]. Hangzhou: Zhejiang University,2021. (in Chinese). doi: 10.1016/j.cja.2020.09.022
[50] [50] 50陈俊. 基于R-YOLO的多源遥感图像海面目标融合检测算法研究[D]. 武汉: 华中科技大学,2019.CHENJ. Research on Fusion Detection Algorithm of Sea Surface Target in Multi-Source Remote Sensing Images based on R-YOLO[D]. Wuhan: Huazhong University of Science and Technology,2019. (in Chinese)
[51] YANG X, YAN J C.
[52] SU N, HUANG Z B, YAN Y M et al. Detect larger at once: large-area remote-sensing image arbitrary-oriented ship detection[J]. IEEE Geoscience and Remote Sensing Letters, 19, 1-5(2022).
[53] SUN Z Z, DAI M C, LENG X G et al. An anchor-free detection method for ship targets in high-resolution SAR images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 7799-7816(2021).
[54] WANG X Y, CUI Z Y, CAO Z J et al. Dense docked ship detection via spatial group-wise enhance attention in SAR images[C], 1244-1247(2021).
[55] CUI Z Y, LENG J X, LIU Y et al. SKNet: detecting rotated ships as keypoints in optical remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 59, 8826-8840(2021).
[56] CHEN J J, XIE F Y, LU Y Y et al. Finding arbitrary-oriented ships from remote sensing images using corner detection[J]. IEEE Geoscience and Remote Sensing Letters, 17, 1712-1716(2020).
[57] WEN R. An enhanced CNN-enabled learning method for promoting ship detection in maritime surveillance system[J]. Ocean Engineering, 235, 109435(2021).
[58] WANG Z Q, ZHOU Y, WANG F T et al. SDGH-net: ship detection in optical remote sensing images based on Gaussian heatmap regression[J]. Remote Sensing, 13, 499(2021).
[59] YOU Y N, LI Z Z, RAN B H et al. Broad area target search system for ship detection via deep convolutional neural network[J]. Remote Sensing, 11, 1965(2019).
[60] SHIN H C, LEE K I, LEE C E. Data augmentation method of object detection for deep learning in maritime image[C], 463-466(2020).
[61] HU J Q, HE J Z, JIANG P et al. SOMC: a object-level data augmentation for sea surface object detection[J]. Journal of Physics: Conference Series, 2171(2022).
[62] ZHIJUN, CHEN, ZHIJUN, CHEN. Deep learning for autonomous ship-oriented small ship detection[J]. Safety Science, 130, 104812(2020).
[63] KONG T, YAO A B, CHEN Y R et al. HyperNet: towards accurate region proposal generation and joint object detection[C], 845-853(2016).
[64] WEI S H, CHEN H M, ZHU X J et al. Ship detection in remote sensing image based on faster R-CNN with dilated convolution[C], 7148-7153(2020).
[65] ZHANG S M, WU R Z, XU K Y et al. R-CNN-based ship detection from high resolution remote sensing imagery[J]. Remote Sensing, 11, 631(2019).
[66] LIU W C, MA L, CHEN H. Arbitrary-oriented ship detection framework in optical remote-sensing images[J]. IEEE Geoscience and Remote Sensing Letters, 15, 937-941(2018).
[67] CAO C Q, WU J, ZENG X D et al. Research on airplane and ship detection of aerial remote sensing images based on convolutional neural network[J]. Sensors, 20, 4696(2020).
[68] [68] 68王浩君. 基于深度学习的光学遥感影像海上舰船目标检测研究[D]. 杭州: 杭州师范大学,2019. doi: 10.1109/igarss.2019.8898759WANGH J. Research on Ship Target Detection in Optical Remote Sensing Images Based on Deep Learning[D]. Hangzhou: Hangzhou Normal University,2019. (in Chinese). doi: 10.1109/igarss.2019.8898759
[69] [69] 69韩子硕, 王春平, 付强. 基于深层次特征增强网络的SAR图像舰船检测[J]. 北京理工大学学报, 2021, 41(9): 1006-1014.HANZ SH, WANGCH P, FUQ. Ship detection in SAR images based on deep feature enhancement network[J]. Transactions of Beijing Institute of Technology, 2021, 41(9): 1006-1014.(in Chinese)
[70] CHEN L, SHI W, DENG D. Improved YOLOv3 based on attention mechanism for fast and accurate ship detection in optical remote sensing images[J]. Remote Sensing, 13, 660(2021).
[71] NIE X, DUAN M Y, DING H X et al. Attention mask R-CNN for ship detection and segmentation from remote sensing images[J]. IEEE Access, 8, 9325-9334(2020).
[72] HU J M, ZHI X Y, SHI T J et al. PAG-YOLO: a portable attention-guided YOLO network for small ship detection[J]. Remote Sensing, 13, 3059(2021).
[73] DENG L, LI G Q, HAN S et al. Model compression and hardware acceleration for neural networks: a comprehensive survey[J]. Proceedings of the IEEE, 108, 485-532(2020).
[74] LIU Z, LI J G, SHEN Z Q et al. Learning efficient convolutional networks through network slimming[C], 2755-2763(2017).
[75] GUO J Y, ZHANG W C, OUYANG W L et al. Model compression using progressive channel pruning[J]. IEEE Transactions on Circuits and Systems for Video Technology, 31, 1114-1124(2021).
[78] WU J X, LENG C, WANG Y H et al. Quantized convolutional neural networks for mobile devices[C], 4820-4828(2016).
[79] XU Y H, DAI W R, QI Y Y et al. Iterative deep neural network quantization with lipschitz constraint[J]. IEEE Transactions on Multimedia, 22, 1874-1888(2020).
[80] ZHANG F, LIU Y B, ZHOU Y S et al. A lossless lightweight CNN design for SAR target recognition[J]. Remote Sensing Letters, 11, 485-494(2020).
[81] CHEN H Y, ZHANG F, TANG B et al. Slim and efficient neural network design for resource-constrained SAR target recognition[J]. Remote Sensing, 10, 1618(2018).
[82] MA X J, JI K F, XIONG B L et al. Light-YOLOv4: an edge-device oriented target detection method for remote sensing images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 10808-10820(2021).
[83] [83] 83陈科峻, 张叶. 基于YOLO-v3模型压缩的卫星图像船只实时检测[J]. 液晶与显示, 2020, 35(11): 1168-1176. doi: 10.37188/yjyxs20203511.1168CHENK J, ZHANGY. Real-time ship detection in satellite images based on YOLO-v3 model compression[J]. Chinese Journal of Liquid Crystals and Displays, 2020, 35(11): 1168-1176. (in Chinese). doi: 10.37188/yjyxs20203511.1168
[84] LI Y D, ZHANG S S, WANG W Q. A lightweight faster R-CNN for ship detection in SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 19, 1-5(2022).
[85] HUANG H, SUN D C, WANG R F et al. Ship target detection based on improved YOLO network[J]. Mathematical Problems in Engineering, 2020, 1-10(2020).
[86] DING P, ZHANG Y, DENG W J et al. A light and faster regional convolutional neural network for object detection in optical remote sensing images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 141, 208-218(2018).
[87] ZHOU L, WEI S Y, CUI Z M et al. Lira-YOLO: a lightweight model for ship detection in radar images[J]. Journal of Systems Engineering and Electronics, 31, 950-956(2020).
[88] ZHAO Y, YIN Y, GUI G. Lightweight deep learning based intelligent edge surveillance techniques[J]. IEEE Transactions on Cognitive Communications and Networking, 6, 1146-1154(2020).
[89] VOINOV S, HEYMANN F, BILL R et al. Multiclass vessel detection from high resolution optical satellite images based on deep neural networks[C], 166-169(2019).
[90] [90] 90聂婷. 大幅宽光学遥感图像目标检测技术研究[D]. 长春: 中国科学院长春光学精密机械与物理研究所,2019.NIET. Research on Target Detection Technology of Large-Width Optical Remote Sensing Image[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2019. (in Chinese)
[92] XIA G S, BAI X, DING J et al. DOTA: a large-scale dataset for object detection in aerial images[C], 3974-3983(2018).
[93] LIU Z K, YUAN L, WENG L B et al. A high resolution optical satellite image dataset for ship recognition and some new baselines[C], 2, 324-331(2017).
[94] CHENG G, HAN J, ZHOU P et al. Multi-class geospatial object detection and geographic image classification based on collection of part detectors[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 98, 119-132(2014).
[96] GALLEGO A J, PERTUSA A, GIL P. Automatic ship classification from optical aerial images with convolutional neural networks[J]. Remote Sensing, 10, 511(2018).
[98] KE, LI, KE, LI. Object detection in optical remote sensing images: a survey and a new benchmark[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 159, 296-307(2020).
[99] [99] 99姚力波, 张筱晗, 吕亚飞, 等. FGSC-23: 面向深度学习精细识别的高分辨率光学遥感图像舰船目标数据集[J]. 中国图象图形学报, 2021, 26(10): 2337-2345.YAOL B, ZHANGX H, LÜY F, et al. FGSC-23: a large-scale dataset of high-resolution optical remote sensing image for deep learning-based fine-grained ship recognition[J]. Journal of Image and Graphics, 2021, 26(10): 2337-2345.(in Chinese)
[100] LI J W, QU C W, SHAO J Q. Ship detection in SAR images based on an improved faster R-CNN[C], 1-6(2017).
[101] WANG Y Y, WANG C, ZHANG H et al. A SAR dataset of ship detection for deep learning under complex backgrounds[J]. Remote Sensing, 11, 765(2019).
[102] [102] 102孙显, 王智睿, 孙元睿, 等. AIR-SARShip-1.0: 高分辨率SAR舰船检测数据集[J]. 雷达学报, 2019, 8(6): 852-862.SUNX, WANGZH R, SUNY R, et al. AIR-SARShip-1.0: high-resolution SAR ship detection dataset[J]. Journal of Radars, 2019, 8(6): 852-862. (in Chinese)
[103] WEI S J, ZENG X F, QU Q Z et al. HRSID: a high-resolution SAR images dataset for ship detection and instance segmentation[J]. IEEE Access, 8, 120234-120254(2020).
[104] PARK K A, PARK J J, JANG J C et al. Multi-spectral ship detection using optical, hyperspectral, and microwave SAR remote sensing data in coastal regions[J]. Sustainability, 10, 4064(2018).
[105] [105] 105李树涛, 李聪妤, 康旭东. 多源遥感图像融合发展现状与未来展望[J]. 遥感学报, 2021, 25(1): 148-166. doi: 10.11834/jrs.20210259LISH T, LIC Y, KANGX D. Development status and future prospects of multi-source remote sensing image fusion[J]. Journal of Remote Sensing, 2021, 25(1): 148-166. (in Chinese). doi: 10.11834/jrs.20210259
[106] SHRIVASTAVA A, GUPTA A, GIRSHICK R. Training region-based object detectors with online hard example mining[C], 761-769(2016).
[107] ZHOU Z H. A brief introduction to weakly supervised learning[J]. National Science Review, 5, 44-53(2018).
[108] YANG Y, PAN Z X, HU Y X et al. PistonNet: object separating from background by attention for weakly supervised ship detection[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 15, 5190-5202(2022).
[109] ELSKEN T, METZEN J H, HUTTER F. Neural Architecture Search[M]. Automated Machine Learning, 63-77(2019).
[111] CARION N, MASSA F, SYNNAEVE G et al.
[112] ZHANG Y N, ER M J, GAO W X et al. High performance ship detection via transformer and feature distillation[C], 31-36(2022).
[113] CHEN Y Y, XIA Z H, LIU J et al. TSDet: end-to-end method with transformer for SAR ship detection[C], 1-8(2022).
Get Citation
Copy Citation Text
Zexian HUANG, Fanlu WU, Yao FU, Yu ZHANG, Xiaonan JIANG. Review of deep learning-based algorithms for ship target detection from remote sensing images[J]. Optics and Precision Engineering, 2023, 31(15): 2295
Category: Information Sciences
Received: Sep. 16, 2022
Accepted: --
Published Online: Sep. 5, 2023
The Author Email: Xiaonan JIANG (jxn_ciomp@qq.com)