Laser & Optoelectronics Progress, Volume. 56, Issue 20, 202406(2019)
Metallic Plasmonic Micro/Nano-Structures for Light-Field Manipulation in Organic Optoelectronic Devices
[33] Feng L, Niu M S, Wen Z C et al. Recent advances of plasmonic organic solar cells: photophysical investigations[J]. Polymers, 10, 123(2018).
[36] Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics[J]. Nature, 424, 824-830(2003).
[37] Koller D M, Hohenau A, Ditlbacher H et al. Organic plasmon-emitting diode[J]. Nature Photonics, 2, 684-687(2008).
[40] Yu H K, Peng Y S, Yang Y et al. Plasmon-enhanced light-matter interactions and applications[J]. npj Computational Materials, 5, 45(2019).
[43] Hobson P A, Wedge S. Wasey J A E, et al. Surface plasmon mediated emission from organic light-emitting diodes[J]. Advanced Materials, 14, 1393-1396(2002).
[45] Gu G. Bulovi V, Burrows P E, et al. Transparent organic light emitting devices[J]. Applied Physics Letters, 68, 2606-2608(1996).
[57] Green M A, Pillai S. Harnessing plasmonics for solar cells[J]. Nature Photonics, 6, 130-132(2012).
[59] Gan Q Q, Bartoli F J, Kafafi Z H. Plasmonic-enhanced organic photovoltaics: breaking the 10% efficiency barrier[J]. Advanced Materials, 25, 2385-2396(2013).
[61] Spinelli P. Hebbink M, de Waele R, et al. Optical impedance matching using coupled plasmonic nanoparticle arrays[J]. Nano Letters, 11, 1760-1765(2011).
[74] Khang D Y, Yoon H, Lee H H. Room-temperature imprint lithography[J]. Advanced Materials, 13, 749-752(2001).
[77] [77] MalaquinL,[\s]{1}CarcenacF,[\s]{1}VieuC,[\s]{1}et[\s]{1}al.[\s]{1}Using[\s]{1}polydimethylsiloxane[\s]{1}as[\s]{1}a[\s]{1}thermocurable[\s]{1}resist[\s]{1}for[\s]{1}a[\s]{1}soft[\s]{1}imprint[\s]{1}lithography[\s]{1}process[J].[\s]{1}Microelectronic[\s]{1}Engineering,[\s]{1}2002,[\s]{1}61/62:[\s]{1}379-[\s]{1}384.[\s]{1}
[87] Sun Y K, Yi F S, Bi Y G et al. Spontaneously formed random corrugations for efficient light extraction enhancement in flexible organic light-emitting devices[J]. Organic Electronics, 65, 91-95(2019).
[103] Jin Y, Feng J, Zhang X L et al. Solving efficiency-stability tradeoff in top-emitting organic light-emitting devices by employing periodically corrugated metallic cathode[J]. Advanced Materials, 24, 1187-1191(2012).
[105] Henson J. DiMaria J, Paiella R. Influence of nanoparticle height on plasmonic resonance wavelength and electromagnetic field enhancement in two-dimensional arrays[J]. Journal of Applied Physics, 106, 093111(2009).
[129] Deng L L, Zhou Z J, Yu T Y et al. Investigation of the localized surface plasmon resonance of Ag@SiO2 core-shell nanocubes and its application in high-performance blue organic light-emitting diodes[J]. Nanotechnology, 30, 385205(2019).
[151] Li X, Hu Y F, Deng Z B et al. Efficiency improvement of polymer solar cells with random micro-nanostructured back electrode formed by active layer self-aggregation[J]. Organic Electronics, 41, 362-368(2017).
[162] Park S, Heo S W, Lee W et al. Self-powered ultra-flexible electronics via nano-grating-patterned organic photovoltaics[J]. Nature, 561, 516-521(2018).
[168] Chen J D, Cui C, Li Y Q et al. Single-junction polymer solar cells exceeding 10% power conversion efficiency[J]. Advanced Materials, 27, 1035-1041(2015).
[175] Xue M, Li L. Tremolet de Villers B J, et al. Charge-carrier dynamics in hybrid plasmonic organic solar cells with Ag nanoparticles[J]. Applied Physics Letters, 98, 253302(2011).
[178] Xie F X. Choy W C H, Wang C C D, et al. Improving the efficiency of polymer solar cells by incorporating gold nanoparticles into all polymer layers[J]. Applied Physics Letters, 99, 153304(2011).
[189] Yates C J. Samuel I D W, Burn P L, et al. Surface plasmon-polariton mediated emission from phosphorescent dendrimer light-emitting diodes[J]. Applied Physics Letters, 88, 161105(2006).
[190] Li X H. Choy W C H, Huo L J, et al. Dual plasmonic nanostructures for high performance inverted organic solar cells[J]. Advanced Materials, 24, 3046-3052(2012).
Get Citation
Copy Citation Text
Yangang Bi, Fangshun Yi, Jing Feng. Metallic Plasmonic Micro/Nano-Structures for Light-Field Manipulation in Organic Optoelectronic Devices[J]. Laser & Optoelectronics Progress, 2019, 56(20): 202406
Category: Optics at Surfaces
Received: Jul. 10, 2019
Accepted: Sep. 9, 2019
Published Online: Oct. 22, 2019
The Author Email: Jing Feng (Jingfeng@jlu.edu.cn)