Laser & Optoelectronics Progress, Volume. 58, Issue 4, 0410001(2021)

Low-Illuminance Image Processing Based on Brightness Channel Detail Enhancement

Yichun Jiang, Weida Zhan*, and Depeng Zhu
Author Affiliations
  • School of Electronic Information Engineering, Changchun University of Science and Technology, Changchun, Jilin 130022, China
  • show less
    Figures & Tables(11)
    Flow chart of proposed algorithm
    Contrast before and after details enhancement. (a) Before processing; (b)after processing
    Comparison of the enhancement effects of various algorithms in scene1.(a) Original image; (b) MSR; (c) ALTM; (d) MF; (e) Ref. [14] algorithm; (f) proposed algorithm
    Comparison of the enhancement effects of various algorithms in scene2. (a) Original image; (b)MSR; (c) ALTM; (d) MF; (e) Ref. [14] algorithm; (f) proposed algorithm
    Comparison of the enhancement effects of various algorithms in scene3. (a) Original image; (b) MSR; (c) ALTM; (d) MF; (e) Ref. [14] algorithm; (f) proposed algorithm
    Comparison of the enhancement effects of various algorithms in scene4. (a) Original image; (b) MSR; (c) ALTM; (d) MF; (e) Ref. [14] algorithm; (f) proposed algorithm
    Comparison of the enhancement effects of various algorithms in scene5. (a) Original image; (b) MSR; (c) ALTM; (d) MF; (e) Ref. [14] algorithm; (f) proposed algorithm
    • Table 1. Selection of parameters for comparison algorithms

      View table

      Table 1. Selection of parameters for comparison algorithms

      AlgorithmParameter
      MSRσ1=15,σ2=80,σ3=250
      ALTMσ=0.001
      MFσ=0.025,μ=0.5,α=2,φ=250°
      Ref. [14]ε=0.01, λr=0.001,λs=0.01,λb=0.15
    • Table 2. Quantitative evaluation table of LOE

      View table

      Table 2. Quantitative evaluation table of LOE

      FigureMSRALTMMFRef. [14] algorithmProposed algorithm
      Fig. 3328.6215.1433.7636.7231.5
      Fig. 4352.8833.9760.7687.8145.4
      Fig. 5255.8488.0609.5566.6176.1
      Fig. 6420.3652.2454.0701.7283.9
      Fig. 7381.1202.3675.0902.9324.1
      Average347.7478.3586.6699.1232.2
    • Table 3. Quantitative evaluation table of entropy

      View table

      Table 3. Quantitative evaluation table of entropy

      FigureOriginal imageMSRALTMMFRef. [14] algorithmProposed algorithm
      Fig. 36.36986.55527.32367.54117.35047.3883
      Fig. 45.71306.19586.23355.93506.27066.6912
      Fig. 55.94246.81716.85036.57286.64567.1247
      Fig. 65.84266.84316.88846.89876.85896.9993
      Fig. 76.74497.40207.43447.56437.38477.6231
    • Table 4. Quantitative evaluation table of gradient energy

      View table

      Table 4. Quantitative evaluation table of gradient energy

      FigureOriginal imageMSRALTMMFRef. [14] algorithmProposed algorithm
      Fig. 30.01230.01660.01530.01960.01620.0165
      Fig. 40.01480.03800.03510.02750.02480.0415
      Fig. 50.01680.05060.04010.03640.03130.0453
      Fig. 60.02260.03690.03580.03890.03380.0448
      Fig. 70.06370.06040.07090.09340.08280.0841
    Tools

    Get Citation

    Copy Citation Text

    Yichun Jiang, Weida Zhan, Depeng Zhu. Low-Illuminance Image Processing Based on Brightness Channel Detail Enhancement[J]. Laser & Optoelectronics Progress, 2021, 58(4): 0410001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Jun. 12, 2020

    Accepted: Aug. 3, 2020

    Published Online: Feb. 4, 2021

    The Author Email: Zhan Weida (zhanweida@cust.edu.cn)

    DOI:10.3788/LOP202158.0410001

    Topics