Chinese Journal of Lasers, Volume. 51, Issue 7, 0701001(2024)

High Harmonic Extreme Ultraviolet Light Source with High Repetition Rate and Power

Zijuan Wei1, Xize Gao1, Xiangyu Meng1, Zhengyan Li1,4、*, Qingbin Zhang2,4, Pengfei Lan2、**, and Peixiang Lu3,4、***
Author Affiliations
  • 1School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
  • 2School of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
  • 3Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
  • 4Optics Valley Laboratory, Wuhan 430074, Hubei, China
  • show less
    Figures & Tables(13)
    HHG with highest average power generated by fiber laser with 1 MHz repetition rate[26]. (a) Experimental device of high power HHG; (b) high harmonic spectrum generated using krypton gas nozzle and corresponding average power of each order harmonic
    Water window HHG generated by high-repetition-rate thulium-doped fiber laser[47]. (a) HHG experimental setup; (b) experimentally collected HHG spectrum
    Distribution of repetition rate, monopulse energy, photon energy, and average power of HHG generated by most advanced fiber laser driving [23-24, 26-27,29-30,32-37,39-40,42,44,47,50,54]
    Phase matching regions. (a) Minimum ionization degree (dash line) and maximum ionization degree (solid line) satisfying phase matching in Kr, Ar, and Ne gases versus photon energy driven by pump light with different wavelengths (λ) and pulse widths (τ); (b) theoretically predicted EPMmax in Ar, Ne, and He gases versus pump laser wavelength; (c) EPMmax in Ar, Ne, and He gases versus pump laser pulse width driven by 1030 nm pump light
    Influence of self-absorption. (a) Variation of absorption length of HHG with gas pressure (pump laser wavelength of 1030 nm); (b) Sq/Sqmax versus Lmed/Labs under different Lcoh/Labs
    Sq/Sqmax and Lcoh versus gas pressure. (a) H25; (b) H33
    Lcoh (dash line) and Sq/Sqmax (solid line) of HHG with wavelength of 13.5 nm generated in Ne medium versus gas pressure after key parameters is adjusted according to scaling law. (a) w0=37.5 μm,Lmed=150 μm; (b) w0=375.0 μm,Lmed=15 μm
    Different modes of coherent diffraction imaging. (a) Traditional CDI; (b) FTH; (c) ptychographic CDI
    Schematic of phase retrieval algorithm
    Imaging examples using HHG ptychography. (a) Sample reconstruction image obtained by ptychography using HHG for the first time[104]; (b) imaging result of mouse hippocampal neuron based on ptychography[107]
    Three-dimensional structural profiles measured by OCT[114]. (a) Depth and lateral information; (b) depth information
    • Table 1. Main parameters of generating high-repetition-rate HHG experiment generated by fiber laser driving

      View table

      Table 1. Main parameters of generating high-repetition-rate HHG experiment generated by fiber laser driving

      Driving laser parameterGas targetHHG parameterRef.
      Wavelength /nmAverage power /W

      Repetition

      rate /kHz

      Pulse energy /μJ

      Pulse

      width /

      fs

      Target type

      Gas

      type

      Photon

      energy

      range /eV

      Target

      photon

      energy /eV

      Average

      power /

      μW

      Flux /(photon/s)
      103010100100270JetAr15‒3823
      28100028Xe13‒18
      103010100100500CellXe13‒2313‒234.5×101228
      10305.410054170JetAr18‒4030.10.24.5×101029
      1030105020051JetKr25‒5730
      1030295058065JetKr19‒6225.33.27.9×101132
      1030405080036

      Hollow

      fiber

      50‒7068.61.51.4×101133
      10308060013029JetXe25‒3830.11433×101334
      Kr27‒4032.5428×1012
      1030255050035JetAr57‒7166.20.87.8×101027
      515111209285JetKr21‒3121.78322.4×101435
      Ar26.7721.7×1013
      34751000598CellXe-Ar10.712507.3×101436
      103050166300135JetAr16‒5239.70.579×101037
      5151911413018‒3621.7802.3×1013
      3439.55714018‒33181.9×1036.6×1014
      25721213524‒3424.138×1011
      5155110005118.6JetKr22‒3126.51.29×1043×101526
      103030754007JetAr70‒120920.17×10939
      Ne70‒160920.043×109
      10306360010535JetAr66‒84713.43×101140
      Ne75‒150930.075×109
      9184.5180256.6JetNe100‒2001252.6×10-31.3×10825
      8001010010040

      Hollow

      fiber

      Ar30‒50388.51.4×101242
      1030351003507.8JetNe120‒2001200.063.1×10944
      He150‒3501809×10-33×108
      19104498450100

      Hollow

      fiber

      He200‒3003001.3×10-42.8×10647
      10302020800135JetXe13‒20181×10-33.5×10850
      10307610700731JetXe21‒3027.751.11.14×101354
    • Table 2. Scaling laws of important parameters between loose and tight focusing regimes[80-82]

      View table

      Table 2. Scaling laws of important parameters between loose and tight focusing regimes[80-82]

      ParameterLoose focusingTight focusing
      Gas densityρς2ρ
      Medium lengthLmedLmed/ς2
      Medium diameterdmeddmed/ς
      Driving laser energyEinEin/ς2
      Harmonic energyEhEh/ς2
      Conversion efficiencyГhГh
    Tools

    Get Citation

    Copy Citation Text

    Zijuan Wei, Xize Gao, Xiangyu Meng, Zhengyan Li, Qingbin Zhang, Pengfei Lan, Peixiang Lu. High Harmonic Extreme Ultraviolet Light Source with High Repetition Rate and Power[J]. Chinese Journal of Lasers, 2024, 51(7): 0701001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: laser devices and laser physics

    Received: Dec. 8, 2023

    Accepted: Jan. 26, 2024

    Published Online: Apr. 11, 2024

    The Author Email: Li Zhengyan (zhengyanli@hust.edu.cn), Lan Pengfei (pengfeilan@hust.edu.cn), Lu Peixiang (lupeixiang@hust.edu.cn)

    DOI:10.3788/CJL231490

    CSTR:32183.14.CJL231490

    Topics