Chinese Journal of Lasers, Volume. 46, Issue 5, 0508014(2019)

Research Progress on Hollow-Core Anti-Resonant Fiber and Gas Raman Laser Technology

Shoufei Gao, Yingying Wang*, and Pu Wang
Author Affiliations
  • National Center of Laser Technology, Institute of Laser Engineering, Beijing University of Technology, Beijing 100124, China
  • show less
    Figures & Tables(13)
    Two optimal photonic bandgap hollow-core fibers. (a) Photonic bandgap hollow-core fiber with transmission loss as low as 1.7 dB/km@1565 nm[10]; (b) non-surface-mode bandgap fiber with transmission loss of 3.5 dB/km over 160 nm bandwidth[15]; (c) loss plots
    SEM images of various types of HC-ARFs. (a) Traditional hexagonal Kagome HC-ARF[22]; (b) hypocycloid Kagome HC-ARF[25]; (c) UV transmission HC-ARF[46]; (d) UV transmission HC-ARF with improved performance[47]; (e) negative curvature HC-ARF with cladding consisting of nodes[<xref ref-type="bibr"
    Ultra-low loss HC-ARFs. (a) Nested HC-ARF[51]; (b) nested elliptical element HC-ARF[52];(c) single ring-elliptical-tube HC-ARF[53]; (d) nested three-adjacent-tube HC-ARF[54]
    Ultralow-loss broadband conjoined-tube HC-ARF. (a) SEM image of conjoined-tube HC-PCF; (b) measured loss (black) and simulated loss (grey)[55]
    Images (top) and spectra (below) of high-order stimulated Raman scattering through 1-m-long hydrogen-filled Kagome fiber. (a) Linearly polarized pump; (b) circularly polarized pump[2]
    Raman frequency comb with stable phase. (a) Schematic of setup; (b) spectrum of Raman frequency comb and total wavevector mismatch Δβ[60]
    Raman spectra of air. (a) Vibrational Raman spectrum of ambient air plotted in log scale with upper photo showing vibrational Raman lines at output of fiber using prism; (b) rotational Raman spectrum of nitrogen molecules in ambient air plotted in linear scale with upper photo showing rotational Raman lines at output of fiber using prism and insert being rotational Raman spectrum on blue side of 473 nm[61]
    Supercontinuum spectra. (a) Supercontinuum spectra obtained using three different spectrometers, and inset is supercontinuum spectra in near infrared for different pulse energies; (b) supercontinuum spectrum after re-calibration [63]
    UV-Visible Raman optical frequency comb. (a) Measured spectrum of Raman optical frequency comb with near-field optical images of modal patterns at fiber end face shown above (as4 is too weak to be directly imaged); (b) photograph of output spectrum dispersed at CaF2 prism and cast onto fluorescent screen, with as4 signal highlighted by box exhibiting complex far-field profile[64]
    Absorption lines of different gas molecules in mid-infrared
    H2 Raman laser output of 4.4 μm in mid-infrared. (a) Output spectrum; (b) average (peak) output power versus average launched (peak) pump power, with curves 1, 2, and 3 being average (peak) powers of all Raman lasers, 1.906 μm Raman laser, and 4.4 μm Raman laser, respectively[70]
    High peak power 2.812 μm mid-infrared Raman laser. (a) Setup of mid-infrared gas Raman laser; (b) Raman spectrum at pump power of 381 mW and CH4 pressure of 1.5 MPa, inset: near-field mode profiles at 1.064 μm, 1.544 μm, and 2.812 μm, respectively; (c) output Raman power versus coupled pump power[44]
    • Table 1. Research progress on HC-ARF for different spectral ranges

      View table

      Table 1. Research progress on HC-ARF for different spectral ranges

      Transmissionband /nmDifferenttypes ofHCFsMinimum lossand wavelengthCorediameter /μmResearchdepartmentTime
      310-360Kagome2000 dB/km @355 nm30University of Limoges2009[45]
      190-290Kagome800 dB/km @280 nm18.7QUEST Institute2014[48]
      315-380 280-315 200-280Square2400 dB/km @348 nm9100 dB/km @276 nm49700 dB/km@231 nm17.7Leibniz Institute ofPhotonic Technology2014[46]
      UV270-310Hexagon300 dB/km@300 nm30Leibniz Institute ofPhotonic Technology2015[47]
      250-600Nodeless3250 dB/km@258 nm1900 dB/km@310 nm1550 dB/km@393 nm15Russian Academy of Sciences2016[57]
      281-316 344-404Nodeless130 dB/km @300 nm170 dB/km @375 nm15Beijing University of Technology2018[49]
      206-225 300-400Nodeless100 dB/km @218 nm260 dB/km @355 nm17University of Bath2018[50]
      450-650Hypocycloid-coreKagome70 dB/km @600 nm130 dB/km @532 nm21University of Limoges2014[28]
      Visible490-610Negativecurvature95 dB/km@571 nm15University of Bath2015[33]
      420-1400Nodeless80 dB/km@532 nm26Beijing University of Technology2017[40]
      1050-1400Hypocycloid-coreKagome150 dB/km@1200 nm50University of Bath2010[19]
      Nearinfrared1100-1750Hypocycloid-coreKagome40 dB/km@1500 nm66University of Bath2012[25]
      1000-1200Hypocycloid-coreKagome17 dB/km@1064 nm30University of Limoges2013[26]
      1500-1730Negativecurvature38 dB/km@1576 nm46University of Bath2013[32]
      870-1120Negativecurvature26 dB/km@1158 nm32University of Bath2016[58]
      850-1700Nodeless100 dB/km@1 μm40Beijing University of Technology2016[38]
      970-1230Nodeless30 dB/km@1090 nm30NKT Photonics2016[39]
      Nearinfrared900-2050Nodeless25 dB/km@1200 nm40University of Southampton2017[42]
      625-930Nodeless7.7 dB/km@750 nm41University of Limoges2017[41]
      1302-1637Conjoined-tube2 dB/km@1512 nm30Beijing University of Technology2018[55]
      1300-1600Nested-tube1.3 dB/km@1450nm31University of Southampton2018[56]
      2900-3850Negativecurvature34 dB/km@3050 nm93University of Bath2012[31]
      2200-2890Negativecurvature24 dB/km@2.4 μm61University of Bath2013[32]
      Mid-infrared3400-4200Negativecurvature76 dB/km@3635 nm108University of Bath2013[32]
      1200-4000Nodeless50 dB/km @2450 nm130 dB/km @3 μm70Beijing University of Technology2017[43]
      2250-3400Hypocycloid-coreKagome9.6 dB/km @2462 nm97University of Southampton2017[29]
    Tools

    Get Citation

    Copy Citation Text

    Shoufei Gao, Yingying Wang, Pu Wang. Research Progress on Hollow-Core Anti-Resonant Fiber and Gas Raman Laser Technology[J]. Chinese Journal of Lasers, 2019, 46(5): 0508014

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: nonlinear optics

    Received: Oct. 31, 2018

    Accepted: Apr. 1, 2019

    Published Online: Nov. 11, 2019

    The Author Email: Wang Yingying (dearyingyingwang@hotmail.com)

    DOI:10.3788/CJL201946.0508014

    Topics