Infrared and Laser Engineering, Volume. 51, Issue 3, 20220152(2022)
Review of chalcogenide glass integrated photonic devices (Invited)
[1] Miller S E. Integrated optics: An introduction[J]. The Bell System Technical Journal, 48, 2059-2069(1969).
[2] Jenkins A. The road to nanophotonics[J]. Nature Photonics, 2, 258-260(2008).
[3] Jalali B, Fathpour S. Silicon photonics[J]. Journal of Lightwave Technology, 24, 4600-4615(2006).
[4] Hunsperger R G, Meyer-Arendt J R. Integrated optics: Theory and technology[J]. Applied Optics, 31, 298(1992).
[5] Eldada L, Shacklette L W. Advances in polymer integrated optics[J]. IEEE Journal of Selected Topics in Quantum Electronics, 6, 54-68(2000).
[6] Boes A, Corcoran B, Chang L, et al. Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits[J]. Laser & Photonics Reviews, 12, 1700256(2018).
[7] Ma H, Jen A Y, Dalton L R. Polymer‐based optical waveguides: Materials, processing, and devices[J]. Advanced Materials, 14, 1339-1365(2002).
[8] Kawachi M. Silica waveguides on silicon and their application to integrated-optic components[J]. Optical and Quantum Electronics, 22, 391-416(1990).
[9] Roelkens G, Liu L, Liang D, et al. III-V/silicon photonics for on‐chip and intra-chip optical interconnects[J]. Laser & Photonics Reviews, 4, 751-779(2010).
[10] [10] Chrostowski L, Hochberg M. Silicon Photonics Design: From Devices to Systems [M]. Cambridge: Cambridge University Press, 2015.
[11] Wang C, Zhang M, Chen X, et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages[J]. Nature, 562, 101-104(2018).
[12] Hida Y, Onose H, Imamura S. Polymer waveguide thermooptic switch with low electric power consumption at 1.3 μm[J]. IEEE Photonics Technology Letters, 5, 782-784(1993).
[13] [13] He Sailing, Dai Daoxin. MicroNano Photonic Integration [M]. Beijing: Science Press, 2010. (in Chinese)
[14] [14] Cai Chun. Study on ⅲⅴ group semiconduct MQW planar waveguide optical device[D]. Nanjing: Southeast University, 2004. (in Chinese)
[15] Leuthold J, Koos C, Freude W. Nonlinear silicon photonics[J]. Nature Photonics, 4, 535-544(2010).
[16] Liu Q, Ramirez J M, Vakarin V, et al. On-chip Bragg grating waveguides and Fabry-Perot resonators for long-wave infrared operation up to 8.4 µm[J]. Optics Express, 26, 34366-34372(2018).
[17] Long M, Gao A, Wang P, et al. Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus[J]. Science Advances, 3, e1700589(2017).
[18] [18] Jian Jialing, Ye Yuting, Li Junying, et al. Recent progress of micronano photonic devices based on chalcogenide glasses[J]. Journal of The Chinese Ceramic Society, 2021, 49(12): 2676. (in Chinese)
[19] Viens J F, Meneghini C, Villeneuve A, et al. Fabrication and characterization of integrated optical waveguides in sulfide chalcogenide glasses[J]. Journal of Lightwave Technology, 17, 1184(1999).
[20] Krogstad M R, Ahn S, Park W, et al. Optical characterization of chalcogenide Ge–Sb–Se waveguides at telecom wavelengths[J]. IEEE Photonics Technology Letters, 28, 2720-2723(2016).
[21] Han T, Madden S, Bulla D, et al. Low loss Chalcogenide glass waveguides by thermal nano-imprint lithography[J]. Optics Express, 18, 19286-19291(2010).
[22] Lin H, Li L, Zou Y, et al. Demonstration of high-
[23] Sabapathy T, Ayiriveetil A, Kar A K, et al. Direct ultrafast laser written C-band waveguide amplifier in Er-doped chalcogenide glass[J]. Optical Materials Express, 2, 1556-1561(2012).
[24] Madden S, Choi D Y, Bulla D, et al. Long, low loss etched As2S3 chalcogenide waveguides for all-optical signal regeneration[J]. Optics Express, 15, 14414-14421(2007).
[25] Hu J, Feng N N, Carlie N, et al. Optical loss reduction in high-index-contrast chalcogenide glass waveguides via thermal reflow[J]. Optics Express, 18, 1469-1478(2010).
[26] Jean P, Douaud A, Michaud-Belleau V, et al. Etchless chalcogenide microresonators monolithically coupled to silicon photonic waveguides[J]. Optics Letters, 45, 2830-2833(2020).
[27] Jean P, Douaud A, Bah S T, et al. Universal micro-trench resonators for monolithic integration with silicon waveguides[J]. Optical Materials Express, 11, 2753-2767(2021).
[28] Kim D G, Han S, Hwang J, et al. Universal light-guiding geometry for on-chip resonators having extremely high
[29] Hwang J, Kim D-G, Han S, et al. Supercontinuum generation in As2S3 waveguides fabricated without direct etching[J]. Optics Letters, 46, 2413-2416(2021).
[30] Zhang B, Zeng P, Yang Z, et al. On-chip chalcogenide microresonators with low-threshold parametric oscillation[J]. Photonics Research, 9, 1272-1279(2021).
[31] Gai X, Madden S, Choi D Y, et al. Dispersion engineered Ge11.5As24Se64.5 nanowires with a nonlinear parameter of 136 W−1 m−1 at 1550 nm[J]. Optics Express, 18, 18866-18874(2010).
[32] Gai X, Choi D Y, Madden S, et al. Polarization-independent chalcogenide glass nanowires with anomalous dispersion for all-optical processing[J]. Optics Express, 20, 13513-13521(2012).
[33] Zhu Y, Wan L, Chen Z, et al. Effects of shallow suspension in low-loss waveguide-integrated chalcogenide microdisk resonators[J]. Journal of Lightwave Technology, 38, 4817-4823(2020).
[34] Hu J, Tarasov V, Carlie N, et al. Exploration of waveguide fabrication from thermally evaporated Ge–Sb–S glass films[J]. Optical Materials, 30, 1560-1566(2008).
[35] Du Q, Huang Y, Li J, et al. Low-loss photonic device in Ge–Sb–S chalcogenide glass[J]. Optics Letters, 41, 3090-3093(2016).
[36] [36] Huang Y, Xia D, Zeng P, et al. Engineered raman lasing in photonic integrated chalcogenide micresonats [J]. arXiv preprint arXiv, 2021: 210711719.
[37] Zhang R, Yang Z, Zhao M, et al. High quality, high index-contrast chalcogenide microdisk resonators[J]. Optics Express, 29, 17775-17783(2021).
[38] Yang Z, Zhang R, Wang Z, et al. High-
[39] Du Q, Luo Z, Zhong H, et al. Chip-scale broadband spectroscopic chemical sensing using an integrated supercontinuum source in a chalcogenide glass waveguide[J]. Photonics Research, 6, 506-510(2018).
[40] Grayson M, Zohrabi M, Bae K, et al. Enhancement of third-order nonlinearity of thermally evaporated GeSbSe waveguides through annealing[J]. Optics Express, 27, 33606(2019).
[41] Abdel-Moneim N S, Mellor C J, Benson T M, et al. Fabrication of stable, low optical loss rib-waveguides via embossing of sputtered chalcogenide glass-film on glass-chip[J]. Optical and Quantum Electronics, 47, 351-361(2015).
[42] Gaeta A L, Lipson M, Kippenberg T J. Photonic-chip-based frequency combs[J]. Nature Photonics, 13, 158-169(2019).
[43] Shang H, Zhang M, Sun D, et al. Optical characterization of Ge11.5As24S64.5 glass for an on-chip supercontinuum[J]. Applied Optics, 60, 5451-5455(2021).
[44] [44] Zeng P, Xia D, Yang Z, et al. HighQ GeAsS Micring Resonats based on improved fabrication process f optical parametric amplifier [C]Proceedings of the CLEO: Applications Technology, 2020.
[45] [45] Chiles J, Malinowski M, Rao A, et al. Lowloss, submicron chalcogenide integrated photonics with chline plasma etching[J]. Applied Physics Letters, 2015, 106(11): 111110.
[46] Xia D, Huang Y, Zhang B, et al. Engineered Raman lasing in photonic integrated chalcogenide microresonators[J]. Laser & Photonics Reviews, 2100443(2022).
[47] Gai X, Choi D Y, Madden S, et al. Supercontinuum generation in the mid-infrared from a dispersion-engineered As 2 S 3 glass rib waveguide[J]. Optics Letters, 37, 3870-3872(2012).
[48] Ma P, Choi D Y, Yu Y, et al. Low-loss chalcogenide waveguides for chemical sensing in the mid-infrared[J]. Optics Express, 21, 29927-29937(2013).
[49] Ma P, Choi D Y, Yu Y, et al. High
[50] Shen W, Zeng P, Yang Z, et al. Chalcogenide glass photonic integration for improved 2 μm optical interconnection[J]. Photonics Research, 8, 1484-1490(2020).
[51] [51] Lin H, Zou Y, Danto S, et al. infrared As2Se3 chalcogenide glassonsilicon waveguides [C]Proceedings of the The 9th International Conference on Group IV Photonics (GFP), IEEE, 2012.
[52] Yu Y, Gai X, Ma P, et al. Experimental demonstration of linearly polarized 2–10 μm supercontinuum generation in a chalcogenide rib waveguide[J]. Optics Letters, 41, 958-961(2016).
[53] [53] Lin H, Xiang Y, Li L, et al. HighQ infrared chalcogenide glass resonats f chemical sensing [C]Proceedings of the 2014 IEEE Photonics Society Summer Topical Meeting Series, IEEE, 2014.
[54] Han Z, Lin P, Singh V, et al. On-chip mid-infrared gas detection using chalcogenide glass waveguide[J]. Applied Physics Letters, 108, 141106(2016).
[55] Su P, Han Z, Kita D, et al. Monolithic on-chip mid-IR methane gas sensor with waveguide-integrated detector[J]. Applied Physics Letters, 114, 051103(2019).
[56] Pi M, Zheng C, Zhao H, et al. Mid-infrared ChG-on-MgF2 waveguide gas sensor based on wavelength modulation spectroscopy[J]. Optics Letters, 46, 4797-4800(2021).
[57] Tittel F. Environmental trace gas detection using laser spectroscopy[J]. Applied Physics B, 67, 273-273(1998).
[58] Craig I M, Taubman M S, Lea A S, et al. Infrared near-field spectroscopy of trace explosives using an external cavity quantum cascade laser[J]. Optics Express, 21, 30401-30414(2013).
[59] Robinson M R, Eaton R P, Haaland D M, et al. Noninvasive glucose monitoring in diabetic patients: A preliminary evaluation[J]. Clinical Chemistry, 38, 1618-1622(1992).
[60] Charrier J, Brandily M-L, Lhermite H, et al. Evanescent wave optical micro-sensor based on chalcogenide glass[J]. Sensors and Actuators B: Chemical, 173, 468-476(2012).
[61] Gutierrez-Arroyo A, Baudet E, Bodiou L, et al. Optical characterization at 7.7 µm of an integrated platform based on chalcogenide waveguides for sensing applications in the mid-infrared[J]. Optics Express, 24, 23109-23117(2016).
[62] Gutierrez-Arroyo A, Baudet E, Bodiou L, et al. Theoretical study of an evanescent optical integrated sensor for multipurpose detection of gases and liquids in the mid-infrared[J]. Sensors and Actuators B: Chemical, 242, 842-848(2017).
[63] Mittal V, Nedeljkovic M, Rowe D J, et al. Chalcogenide glass waveguides with paper-based fluidics for mid-infrared absorption spectroscopy[J]. Optics Letters, 43, 2913-2916(2018).
[64] Pi M, Zheng C, Ji J, et al. Surface-enhanced infrared absorption spectroscopic chalcogenide waveguide sensor using a silver island film[J]. ACS Applied Materials & Interfaces, 13, 32555-32563(2021).
[65] Pi M, Zheng C, Bi R, et al. Design of a mid-infrared suspended chalcogenide/silica-on-silicon slot-waveguide spectroscopic gas sensor with enhanced light-gas interaction effect[J]. Sensors and Actuators B: Chemical, 297, 126732(2019).
[66] Zegadi R, Lorrain N, Bodiou L, et al. Enhanced mid-infrared gas absorption spectroscopic detection using chalcogenide or porous germanium waveguides[J]. Journal of Optics, 23, 035102(2021).
[67] Wang Y, Chen W, Wang P, et al. Ultra-high-power-confinement-factor integrated mid-infrared gas sensor based on the suspended slot chalcogenide glass waveguide[J]. Sensors and Actuators B: Chemical, 347, 130466(2021).
[68] Xu P, Yu Z, Shen X, et al. High quality factor and high sensitivity chalcogenide 1D photonic crystal microbridge cavity for mid-infrared sensing[J]. Optics Communications, 382, 361-365(2017).
[69] Nalivaiko V, Ponomareva M. Optical grating waveguide sensors based оn chalcogenide glasses[J]. Optics and Spectroscopy, 126, 439-442(2019).
[70] Huang W, Luo Y, Zhang W, et al. High-sensitivity refractive index sensor based on Ge–Sb–Se chalcogenide microring resonator[J]. Infrared Physics & Technology, 103792(2021).
[71] Zhang X, Zhou C, Luo Y, et al. High
[72] Lamont M R, Luther-Davies B, Choi D Y, et al. Supercontinuum generation in dispersion engineered highly nonlinear (
[73] [73] Yeom D I, Mägi E C, Lamont M R, et al. Lowthreshold supercontinuum generation in highly nonlinear chalcogenide nanowires [J]. Optics Letters, 2008, 33(7): 660662.
[74] [74] Karim M, Rahman B, Agrawal G P. Dispersion engineered Ge11.5As24Se64.5 nanowire f supercontinuum generation: A parametric study [J]. Optics Express, 2014, 22(25): 3102931040.
[75] Shang H, Sun D, Zhang M, et al. On-chip detector based on supercontinuum generation in chalcogenide waveguide[J]. Journal of Lightwave Technology, 39, 3890-3895(2021).
[76] Yu Y, Gai X, Wang T, et al. Mid-infrared supercontinuum generation in chalcogenides[J]. Optical Materials Express, 3, 1075-1086(2013).
[77] Yu Y, Gai X, Ma P, et al. A broadband, quasi-continuous, mid‐infrared supercontinuum generated in a chalcogenide glass waveguide[J]. Laser & Photonics Reviews, 8, 792-798(2014).
[78] Xia D, Huang Y, Zhang B, et al. On-chip broadband mid-infrared supercontinuum generation based on Highly nonlinear chalcogenide glass waveguides[J]. Frontiers in Physics, 9, 93(2021).
[79] Qiu W, Rakich P T, Shin H, et al. Stimulated Brillouin scattering in nanoscale silicon step-index waveguides: A general framework of selection rules and calculating SBS gain[J]. Optics Express, 21, 31402-31419(2013).
[80] Rakich P T, Davids P, Wang Z. Tailoring optical forces in waveguides through radiation pressure and electrostrictive forces[J]. Optics Express, 18, 14439-14453(2010).
[81] Pant R, Poulton C G, Choi D Y, et al. On-chip stimulated Brillouin scattering[J]. Optics Express, 19, 8285-8290(2011).
[82] Kabakova I V, Pant R, Choi D Y, et al. Narrow linewidth Brillouin laser based on chalcogenide photonic chip[J]. Optics Letters, 38, 3208-3211(2013).
[83] Marpaung D, Morrison B, Pagani M, et al. Low-power, chip-based stimulated Brillouin scattering microwave photonic filter with ultrahigh selectivity[J]. Optica, 2, 76-83(2015).
[84] Morrison B, Casas-Bedoya A, Ren G, et al. Compact Brillouin devices through hybrid integration on silicon[J]. Optica, 4, 847-854(2017).
[85] Song J, Guo X, Peng W, et al. Stimulated Brillouin scattering in low-loss Ge25Sb10S65 chalcogenide waveguides[J]. Journal of Lightwave Technology, 39, 5048-5053(2021).
[86] Eggleton B J, Poulton C G, Rakich P T, et al. Brillouin integrated photonics[J]. Nature Photonics, 13, 664-677(2019).
[87] Rong H, Xu S, Cohen O, et al. A cascaded silicon Raman laser[J]. Nature Photonics, 2, 170-174(2008).
[88] Latawiec P, Venkataraman V, Burek M J, et al. On-chip diamond Raman laser[J]. Optica, 2, 924-928(2015).
[89] Liu X, Sun C, Xiong B, et al. Integrated continuous-wave aluminum nitride Raman laser[J]. Optica, 4, 893-896(2017).
[90] Fang Z, Luo H, Lin J, et al. Efficient electro-optical tuning of an optical frequency microcomb on a monolithically integrated high-
[91] Vanier F, Rochette M, Godbout N, et al. Raman lasing in As2S3 high-
[92] Vanier F, Peter Y A, Rochette M. Cascaded Raman lasing in packaged high quality As2S3 microspheres[J]. Optics Express, 22, 28731-28739(2014).
[93] Andrianov A V, Anashkina E A. Tunable Raman lasing in an As2S3 chalcogenide glass microsphere[J]. Optics Express, 29, 5580-5587(2021).
[94] Graydon O. Birth of the programmable optical chip[J]. Nat Photonics, 10, 1(2016).
[95] Loke D, Lee T, Wang W, et al. Breaking the speed limits of phase-change memory[J]. Science, 336, 1566-1569(2012).
[96] Ríos C, Stegmaier M, Hosseini P, et al. Integrated all-photonic non-volatile multi-level memory[J]. Nature Photonics, 9, 725-732(2015).
[97] Zhang Q, Zhang Y, Li J, et al. Broadband nonvolatile photonic switching based on optical phase change materials: Beyond the classical figure-of-merit[J]. Optics Letters, 43, 94-97(2018).
[98] Zhang B, Sun Y, Xu Y, et al. Loss-induced switching between electromagnetically induced transparency and critical coupling in a chalcogenide waveguide[J]. Optics Letters, 46, 2828-2831(2021).
[99] Abdollahramezani S, Hemmatyar O, Taghinejad H, et al. Tunable nanophotonics enabled by chalcogenide phase-change materials[J]. Nanophotonics, 9, 1189-1241(2020).
[100] Fang Z, Chen R, Zheng J, et al. Non-volatile reconfigurable silicon photonics based on phase-change materials[J]. IEEE Journal of Selected Topics in Quantum Electronics, 28, 1-17(2021).
[101] [101] Nisar M S, Yang X, Lu L, et al. Onchip integrated photonic devices based on phase change materials [C]Proceedings of the Photonics, 2021.
[102] Rios C, Hosseini P, Wright C D, et al. On‐chip photonic memory elements employing phase‐change materials[J]. Advanced Materials, 26, 1372-1377(2014).
[103] Zheng J, Khanolkar A, Xu P, et al. GST-on-silicon hybrid nanophotonic integrated circuits: A non-volatile quasi-continuously reprogrammable platform[J]. Optical Materials Express, 8, 1551-1561(2018).
[104] Xu P, Zheng J, Doylend J K, et al. Low-loss and broadband nonvolatile phase-change directional coupler switches[J]. ACS Photonics, 6, 553-557(2019).
[105] Fang Z, Zheng J, Saxena A, et al. Non‐volatile reconfigurable integrated photonics enabled by broadband low‐loss phase change material[J]. Advanced Optical Materials, 9, 2002049(2021).
[106] Pernice W H, Bhaskaran H. Photonic non-volatile memories using phase change materials[J]. Applied Physics Letters, 101, 171101(2012).
[107] [107] Cheng Hongwei, Yu Zhenming, Zhang Tian, et al. Advances challenges of optical neural wks[J]. Chinese Journal of Lasers, 2020, 47(5): 0500004. (in Chinese)
[108] Feldmann J, Stegmaier M, Gruhler N, et al. Calculating with light using a chip-scale all-optical abacus[J]. Nature Communications, 8, 1-8(2017).
[109] [109] Gallo M L, Sebastian A, Mathis R, et al. Mixedprecision inmemy computing [J]. Nature Electronics, 2018, 1(4): 246253.
[110] Ríos C, Youngblood N, Cheng Z, et al. In-memory computing on a photonic platform[J]. Science Advances, 5, eaau5759(2019).
[111] Feldmann J, Youngblood N, Karpov M, et al. Parallel convolutional processing using an integrated photonic tensor core[J]. Nature, 589, 52-58(2021).
[112] Feldmann J, Youngblood N, Li X, et al. Integrated 256 cell photonic phase-change memory with 512-bit capacity[J]. IEEE Journal of Selected Topics in Quantum Electronics, 26, 1-7(2020).
[113] Delaney M, Zeimpekis I, Lawson D, et al. A new family of ultralow loss reversible phase‐change materials for photonic integrated circuits: Sb2S3 and Sb2Se3[J]. Advanced Functional Materials, 30, 2002447(2020).
[114] Dong W, Liu H, Behera J K, et al. Wide bandgap phase change material tuned visible photonics[J]. Advanced Functional Materials, 29, 1806181(2019).
[115] Zhang Y, Chou J B, Li J, et al. Broadband transparent optical phase change materials for high-performance nonvolatile photonics[J]. Nature Communications, 10, 1-9(2019).
[116] Zhang Y, Fowler C, Liang J, et al. Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material[J]. Nature Nanotechnology, 16, 661-666(2021).
[117] Yang X, Nisar M S, Yuan W, et al. Phase change material enabled 2×2 silicon nonvolatile optical switch[J]. Optics Letters, 46, 4224-4227(2021).
[118] Alquliah A, Elkabbash M, Cheng J, et al. Reconfigurable metasurface-based 1×2 waveguide switch[J]. Photonics Research, 9, 2104-2115(2021).
[119] Zheng J, Fang Z, Wu C, et al. Nonvolatile electrically reconfigurable integrated photonic switch enabled by a silicon PIN diode heater[J]. Advanced Materials, 32, 2001218(2020).
[120] Zhang H, Zhou L, Lu L, et al. Miniature multilevel optical memristive switch using phase change material[J]. ACS Photonics, 6, 2205-2212(2019).
Get Citation
Copy Citation Text
Zhen Yang, Yuefeng Wang, Huimin Jin, Zhiyuan Wang, Peipeng Xu, Wei Zhang, Weiwei Chen, Shixun Dai. Review of chalcogenide glass integrated photonic devices (Invited)[J]. Infrared and Laser Engineering, 2022, 51(3): 20220152
Category: Special issue-Mid-infrared integrated optoelectronic technology
Received: Mar. 8, 2022
Accepted: --
Published Online: Apr. 8, 2022
The Author Email: Peipeng Xu (xupeipeng@nbu.edu.cn)