Chinese Journal of Lasers, Volume. 47, Issue 7, 701004(2020)
Colloidal Quantum Dot Lasers and On-Chip Integration
[1] Zhang C, Zou C L, Zhao Y et al. Organic printed photonics: from microring lasers to integrated circuits[J]. Science Advances, 1, e1500257(2015).
[2] Duan X F, Huang Y, Agarwal R et al. Single-nanowire electrically driven lasers[J]. Nature, 421, 241-245(2003).
[3] Gather M C, Yun S H. Single-cell biological lasers[J]. Nature Photonics, 5, 406-410(2011).
[4] Fan F, Turkdogan S, Liu Z C et al. A monolithic white laser[J]. Nature Nanotechnology, 10, 796-803(2015).
[5] Zhao J Y, Yan Y L, Gao Z H et al. Full-color laser displays based on organic printed microlaser arrays[J]. Nature Communications, 10, 870(2019).
[6] Miller D A B. Device requirements for optical interconnects to silicon chips[J]. Proceedings of the IEEE, 97, 1166-1185(2009).
[7] Smit M, van der Tol J, Hill M. Moore's law in photonics[J]. Laser & Photonics Reviews, 6, 1-13(2012).
[8] Kagan C R, Murray C B. Charge transport in strongly coupled quantum dot solids[J]. Nature Nanotechnology, 10, 1013-1026(2015).
[10] Kagan C R, Lifshitz E, Sargent E H et al. 353(6302): aac5523(2016).
[12] Kim J Y, Voznyy O, Zhitomirsky D et al. 25th anniversary article. Colloidal quantum dot materials and devices: a quarter-century of advances[J]. Advanced Materials, 25, 4986-5010(2013).
[13] Yang J, Choi M K, Kim D H et al. Designed assembly and integration of colloidal nanocrystals for device applications[J]. Advanced Materials, 28, 1176-1207(2016).
[14] Rong K X, Liu H, Shi K B et al. Pattern-assisted stacking colloidal quantum dots for photonic integrated circuits[J]. Nanoscale, 11, 13885-13893(2019).
[15] Rong K X, Sun C W, Shi K B et al. Room-temperature planar lasers based on water-dripping microplates of colloidal quantum dots[J]. ACS Photonics, 4, 1776-1784(2017).
[16] Adachi M M, Fan F J, Sellan D P et al. Microsecond-sustained lasing from colloidal quantum dot solids[J]. Nature Communications, 6, 8694(2015).
[17] Lin C H, Zeng Q J, Lafalce E et al. Large-scale robust quantum dot microdisk lasers with controlled high quality cavity modes[J]. Advanced Optical Materials, 5, 1700011(2017).
[18] Xie W Q, Stöferle T, Rainò G et al. On-chip integrated quantum-dot-silicon-nitride microdisk lasers[J]. Advanced Materials, 29, 1604866(2017).
[19] Gao Y. Tobing L Y M, Kiffer A, et al. Azimuthally polarized, circular colloidal quantum dot laser beam enabled by a concentric grating[J]. ACS Photonics, 3, 2255-2261(2016).
[20] Stasio F D, Polovitsyn A, Angeloni I et al. Broadband amplified spontaneous emission and random lasing from wurtzite CdSe/CdS “giant-shell” nanocrystals[J]. ACS Photonics, 3, 2083-2088(2016).
[21] Yao Y C, Yang Z P, Hwang J M et al. Coherent and polarized random laser emissions from colloidal CdSe/ZnS quantum dots plasmonically coupled to ellipsoidal Ag nanoparticles[J]. Advanced Optical Materials, 5, 1-11(2017).
[22] Wang Y, Ta V D, Leck K S et al. Robust whispering-gallery-mode microbubble lasers from colloidal quantum dots[J]. Nano Letters, 17, 2640-2646(2017).
[24] Kress S J P, Cui J, Rohner P et al. A customizable class of colloidal-quantum-dot spasers and plasmonic amplifiers[J]. Science Advances, 3, e1700688(2017).
[25] Zhu Y P, Xie W Q, Bisschop S et al. On-chip single-mode distributed feedback colloidal quantum dot laser under nanosecond pumping[J]. ACS Photonics, 4, 2446-2452(2017).
[26] Lafalce E, Zeng Q J, Lin C H et al. Robust lasing modes in coupled colloidal quantum dot microdisk pairs using a non-Hermitian exceptional point[J]. Nature Communications, 10, 1-8(2019).
[27] Le Feber B. Prins F, de Leo E, et al. Colloidal-quantum-dot ring lasers with active color control[J]. Nano Letters, 18, 1028-1034(2018).
[29] Fan F J, Voznyy O, Sabatini R P et al. Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy[J]. Nature, 544, 75-79(2017).
[30] Lim J, Park Y, Klimov V I. Optical gain in colloidal quantum dots achieved with direct-current electrical pumping[J]. Nature Materials, 17, 42-49(2018).
[31] Gollner C, Ziegler J, Protesescu L et al. Random lasing with systematic threshold behavior in films of CdSe/CdS core/thick-shell colloidal quantum dots[J]. ACS Nano, 9, 9792-9801(2015).
[32] Liao C, Xu R L, Xu Y Q et al. Ultralow-threshold single-mode lasing from phase-pure CdSe/CdS core/shell quantum dots[J]. Journal of Physical Chemistry Letters, 7, 4968-4976(2016).
[33] Wang Y, Fong K E, Yang S C et al. Unraveling the ultralow threshold stimulated emission from CdZnS/ZnS quantum dot and enabling high-Q microlasers[J]. Laser & Photonics Reviews, 9, 507-516(2015).
[34] Schäfer J, Mondia J P, Sharma R et al. Quantum dot microdrop laser[J]. Nano Letters, 8, 1709-1712(2008).
[36] Rong K X, Gan F Y, Shi K B et al. Configurable integration of on-chip quantum dot lasers and subwavelength plasmonic waveguides[J]. Advanced Materials, 30, 1706546(2018).
[37] Huang C, Zhang C, Xiao S M et al. Ultrafast control of vortex microlasers[J]. Science, 367, 1018-1021(2020).
[38] Tang S J, Liu Z H, Qian Y J et al. A tunable optofluidic microlaser in a photostable conjugated polymer[J]. Advanced Materials, 30, e1804556(2018).
Get Citation
Copy Citation Text
Liu Hui, Gong Qihuang, Chen Jianjun. Colloidal Quantum Dot Lasers and On-Chip Integration[J]. Chinese Journal of Lasers, 2020, 47(7): 701004
Special Issue:
Received: Mar. 7, 2020
Accepted: --
Published Online: Jul. 10, 2020
The Author Email: Jianjun Chen (jjchern@pku.edu.cn)