Journal of Nantong University (Natural Science Edition), Volume. 24, Issue 2, 29(2025)
Core loss prediction method for magnetic components based on machine learning
[1] [1] SAFAYATULLAH M, ELRAIS M T, GHOSH S, et al. A comprehensive review of power converter topologies and control methods for electric vehicle fast charging applications[J]. IEEE Access, 2022, 10: 40753-40793.
[2] [2] HONG W Z, LIU H J, LIU F, et al. Improved calculation of magnetic hysteresis loss of stacked superconducting cable under T-a formulation[J]. IEEE Transactions on Applied Superconductivity, 2022, 32(6): 5900905.
[3] [3] JIN J M. Introduction to magnetic resonance imaging[M]//Electromagnetic Analysis and Design in Magnetic Resonance Imaging. London: Routledge, 2018: 1-37.
[4] [4] DOGARIU E, LI H R, SERRANO LPEZ D, et al. Transfer learning methods for magnetic core loss modeling [C]//Proceedings of the 2021 IEEE 22nd Workshop on Control and Modelling of Power Electronics(COMPEL), November 2-5, 2021, Cartagena, Colombia. New York: IEEE Xplore, 2021: 1-6.
[5] [5] VENKATACHALAM K, SULLIVAN C R, ABDALLAH T, et al. Accurate prediction of ferrite core loss with nonsinusoidal waveforms using only Steinmetz parameters [C]//Proceedings of the 2002 IEEE Workshop on Computers in Power Electronics, June 3-4, 2002, Mayaguez, PR, USA. New York: IEEE Xplore, 2002: 36-41.
[6] [6] NABIH A, JIN F, GADELRAB R, et al. Characterization and mitigation of dimensional effects on core loss in high-power high-frequency converters[J]. IEEE Transactions on Power Electronics, 2023, 38(11): 14017-14036.
[8] [8] DONG X B, YU Z W, CAO W M, et al. A survey on ensemble learning[J]. Frontiers of Computer Science, 2020, 14(2): 241-258.
[9] [9] PISNER D A, SCHNYER D M. Support vector machine[M]//Machine Learning. Amsterdam: Elsevier, 2020: 101-121.
[10] [10] PARMAR A, KATARIYA R, PATEL V. A review on random forest: an ensemble classifier[M]//International Conference on Intelligent Data Communication Technologies and Internet of Things(ICICI)2018. Cham: Springer International Publishing, 2018: 758-763.
[11] [11] FENG J, YU Y, ZHOU Z H. Multi-layered gradient boosting decision trees[EB/OL]. (2018-05-31)[2024-06-22]. http://doi.org/10.48550/arXiv.1806.00007.
[12] [12] CHEN T Q, GUESTRIN C. XGBoost: a scalable tree boosting system[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, California, USA. New York: ACM, 2016: 785-794.
[13] [13] REEVES C R. Genetic algorithms[M]//GENDREAU M, POTVIN J Y. Handbook of Metaheuristics. 2nd ed. New York: Springer, 2010: 109-139.
[18] [18] DEB K, SINDHYA K, HAKANEN J. Multi-objective optimization[M]//Decision Sciences. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2016: 145-184.
[20] [20] REINERT J, BROCKMEYER A, de DONCKER R W. Calculation of losses in Ferro- and ferrimagnetic materials based on the modified Steinmetz equation [C]//Proceedings of the Conference Record of the 1999 IEEE Industry Applications Conference, Thirty-Forth IAS Annual Meeting, October 3-7, 1999, Phoenix, AZ, USA. New York: IEEE, 1999: 2087-2092.
[21] [21] MAKIEWICZ A, RATAJCZAK W. Principal components analysis(PCA)[J]. Computers & Geosciences, 1993, 19(3): 303-342.
Get Citation
Copy Citation Text
YAO Qida, PING Peng, ZHU Xinyi, ZHU Xinfan. Core loss prediction method for magnetic components based on machine learning[J]. Journal of Nantong University (Natural Science Edition), 2025, 24(2): 29
Received: Oct. 23, 2024
Accepted: Aug. 25, 2025
Published Online: Aug. 25, 2025
The Author Email: PING Peng (pingpeng@ntu.edu.cn)