Laser & Optoelectronics Progress, Volume. 62, Issue 10, 1000003(2025)

Review of Deep Learning-Based 3D Reconstruction

Wanyun Li, Yasheng Zhang, Yuqiang Fang*, Qinyu Zhu, and Xinli Zhu
Author Affiliations
  • Space Engineering University, Beijing 101416, China
  • show less
    Figures & Tables(14)
    Typical 3D shape representation methods. (a) Explicit representation; (b) implicit representation
    Schematic diagram of 3D ShapeNets[14]
    3D-R2N2 network architecture[16]
    Architecture of 3D Volume Transformer network[25]
    PointNet network architecture[27]
    Stereo2Point network architecture[33]
    Pixel2Mesh network architecture[42]
    VANet network architecture[46]
    MISE flowchart
    Schematic of the continuous implicit function DeepSDF[12]
    NeRF new perspective synthesis[13]
    Geo-NeuS network architecture[83]
    • Table 1. Summarization of explicit representation-based 3D reconstruction networks

      View table

      Table 1. Summarization of explicit representation-based 3D reconstruction networks

      MethodYearTraining processOutput 3D representationDataset
      Supervised or unsupervisedTraining network
      3D ShapeNets142015SupervisedDBNVoxelModelNet
      TL-embedding152016SupervisedE-DVoxelIKEA
      3D-R2N2162016SupervisedE-DVoxelModelNet
      Pix2Vox182019SupervisedE-DVoxelShapeNet, Pix3D
      Pix2Vox++192020SupervisedE-DVoxelShapeNet, Pix3D
      P2VNet202023SupervisedE-DVoxelThings3D
      OGN222017SupervisedE-DVoxelShapeNet
      Adaptive O-CNN232018SupervisedE-DVoxelShapeNet
      3D-RETR242021SupervisedTransformerVoxelShapeNet
      3D Volume Transformer252021SupervisedTransformerVoxelShapeNet, Pix3D
      PointNet272017SupervisedE-DPointModelNet
      PointNet++282017SupervisedE-DPointModelNet
      3D-LMNet302018SupervisedE-DPointShapeNet
      Stereo2Point332021UnsupervisedE-DPointStereoShapeNet
      Pixel2Mesh422018SupervisedGCNMeshModelNet
      Pixel2Mesh++432019SupervisedGCNMeshShapeNet
      Multi-view Pixel2Mesh++452023SupervisedGCNMeshShapeNet
      VANet462021SupervisedTransformerMeshShapeNet
      T-Pixel2Mesh482024SupervisedTransformerMeshShapeNet
    • Table 2. Common 3D datasets

      View table

      Table 2. Common 3D datasets

      DatasetTypeNumber of typesNumber of 2D images3D model
      Quantity3D representation
      ShapeNetIndoor objects5551300CAD
      27012000CAD
      ModelNetIndoor objects660151128CAD
      Pix3DIndoor objects910069395CAD
      IKEAIndoor objects7800225CAD
      PASCAL 3D+Outdoor scene12308991015CAD
      ObjectNet3DMulti-scene1009012744147CAD
      DTUMulti-scene80254104235Point
      KITTIOutdoor scene314999Point
    Tools

    Get Citation

    Copy Citation Text

    Wanyun Li, Yasheng Zhang, Yuqiang Fang, Qinyu Zhu, Xinli Zhu. Review of Deep Learning-Based 3D Reconstruction[J]. Laser & Optoelectronics Progress, 2025, 62(10): 1000003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Reviews

    Received: Sep. 24, 2024

    Accepted: Nov. 15, 2024

    Published Online: Apr. 23, 2025

    The Author Email: Yuqiang Fang (fangyuqiang@nudt.edu.cn)

    DOI:10.3788/LOP242030

    CSTR:32186.14.LOP242030

    Topics