Chinese Journal of Liquid Crystals and Displays, Volume. 36, Issue 8, 1075(2021)

Modulation of reflection band in polymer-stabilized cholesteric liquid crystals by changing DC electric field direction

ZHANG Xin-min1,2、*, LU Hong-bo1, WANG Qi1,2, WANG Cang-yu1,2, XU Miao1, ZHU Jun1, and QIU Long-zhen1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(31)

    [2] [2] CHEN X W, WANG L, CHEN Y J, et al. Broadband reflection of polymer-stabilized chiral nematic liquid crystals induced by a chiral azobenzene compound [J]. Chem. Commun., 2014, 50(6): 691-694.

    [3] [3] SHARMA V, CRNE M, PARK J O, et al. Structural origin of circularly polarized iridescence in jeweled beetles [J]. Science, 2009, 325(5939): 449-451.

    [4] [4] BIAN Z Y, Li K X, HUANG W, et al. Characteristics of selective reflection of chiral nematic liquid crystalline gels with a nonuniform pitch distribution [J]. Appl. Phys. Lett., 2007, 91(20): 201908.

    [5] [5] LI Z L, DESAI P, AKINS R B, et al. Electrically tunable color for full-color reflective displays [C]//Proceedings SPIE 4658, Liquid Crystal Materials, Devices, and Applications Ⅷ. San Jose, California, United States: SPIE, 2002: 7-13.

    [6] [6] FINKELMANN H, KIM S T, MUOZ A, et al. Tunable mirrorless lasing in cholesteric liquid crystalline elastomers [J]. Adv. Mater., 2001, 13(14): 1069-1072.

    [7] [7] FORGET S, CHNAI S. Towards applications of organic solid-state lasers [M]//FORGET S, CHNAIS S. Organic Solid-State Lasers. Berlin: Springer, 2013: 151-166.

    [8] [8] KHANDELWAL H, DEBIJE M G, WHITE T J, et al. Electrically tunable infrared reflector with adjustable bandwidth broadening up to 1100 nm [J]. J. Mater. Chem. A, 2016, 4(16): 6064-6069.

    [9] [9] OCHOA C E, ARIES M B C, VAN LOENEN E J, et al. Considerations on design optimization criteria for windows providing low energy consumption and high visual comfort [J]. Appl. Energy, 2012, 95: 238-245.

    [10] [10] KHANDELWAL H, LOONEN R C G M, HENSEN J L M, et al. Electrically switchable polymer stabilised broadband infrared reflectors and their potential as smart windows for energy saving in buildings [J]. Sci. Rep., 2015, 5(1): 11773.

    [12] [12] ZHANG W X, KRAGT S, SCHENNING A P H J, et al. Easily processable temperature-responsive infrared-reflective polymer coatings [J]. ACS Omega, 2017, 2(7): 3475-3482.

    [13] [13] MITOV M. Cholesteric liquid crystals with a broad light reflection band [J]. Adv. Mater., 2012, 24(47): 6260-6276.

    [14] [14] GUO J B, YANG H, LI R, et al. Effect of network concentration on the performance of polymer-stabilized cholesteric liquid crystals with a double-handed circularly polarized light reflection band [J]. J. Phys. Chem. C, 2009, 113(37): 16538-16543.

    [17] [17] YANG H, MISHIMA K, MATSUYAMA K, et al. Thermally bandwidth-controllable reflective polarizers from (polymer network/liquid crystal/chiral dopant) composites [J]. Appl. Phys. Lett., 2003, 82(15): 2407-2409.

    [18] [18] CUI X P, HUANG Q, LIU T, et al. Pitch gradient induced by disklike chiral molecular diffusion in chiral-nematic liquid crystals [J]. J. Appl. Phys., 2010, 107(6): 063711.

    [19] [19] KIM J, KIM H, KIM S, et al. Broadening the reflection bandwidth of polymer-stabilized cholesteric liquid crystal via a reactive surface coating layer [J]. Appl. Opt., 2017, 56(20): 5731-5735.

    [22] [22] BROER D J, MOL G N, VAN HAAREN J A M M, et al. Photo-induced diffusion in polymerizing chiral-nematic media [J]. Adv. Mater., 1999, 11(7): 573-578.

    [23] [23] HU W, ZHAO H Y, SONG L, et al. Electrically controllable selective reflection of chiral nematic liquid crystal/chiral ionic liquid composites [J]. Adv. Mater., 2010, 22(4): 468-472.

    [24] [24] TONDIGLIA V P, NATARAJAN L V, BAILEY C A, et al. Bandwidth broadening induced by ionic interactions in polymer stabilized cholesteric liquid crystals [J]. Opt. Mater. Express, 2014, 4(7): 1465-1472.

    [25] [25] LEE K M, TONDIGLIA V P, MCCONNEY M E, et al. Color-tunable mirrors based on electrically regulated bandwidth broadening in polymer-stabilized cholesteric liquid crystals [J]. ACS Photonics, 2014, 1(10): 1033-1041.

    [26] [26] NEMATI H, LIU S Y, ZOLA R S, et al. Mechanism of electrically induced photonic band gap broadening in polymer stabilized cholesteric liquid crystals with negative dielectric anisotropies [J]. Soft Matter, 2015, 11(6): 1208-1213.

    [27] [27] YU M N, WANG L, NEMATI H, et al. Effects of polymer network on electrically induced reflection band broadening of cholesteric liquid crystals [J]. J. Polym. Sci. Part B: Polym. Phys., 2017, 55(11): 835-846.

    [28] [28] LU H B, HU J L, CHU Y T, et al. Cholesteric liquid crystals with an electrically controllable reflection bandwidth based on ionic polymer networks and chiral ions [J]. J. Mater. Chem. C, 2015, 3(21): 5406-5411.

    [29] [29] ZHANG Q, ZHANG X M, YANG L, et al. Polymer-stabilised cholesteric liquid-crystals as tunable light-reflector with low operating-voltage and energy consumption [J]. Liq. Cryst., 2020, 47(11): 1655-1662.

    [30] [30] LEE K M, TONDIGLIA V P, GODMAN N P, et al. Blue-shifting tuning of the selective reflection of polymer stabilized cholesteric liquid crystals [J]. Soft Matter, 2017, 13(35): 5842-5848.

    [31] [31] LI F S, WANG L, SUN W P, et al. Dye induced great enhancement of broadband reflection from polymer stabilized cholesteric liquid crystals [J]. Polym. Adv. Technol., 2012, 23(2): 143-148.

    [32] [32] ZHANG L P, WANG M, WANG L, et al. Polymeric infrared reflective thin films with ultra-broad bandwidth [J]. Liq. Cryst., 2016, 43(6): 750-757.

    [33] [33] KHANDELWAL H, TIMMERMANS G H, DEBIJE M G, et al. Dual electrically and thermally responsive broadband reflectors based on polymer network stabilized chiral nematic liquid crystals: the role of crosslink density [J]. Chem. Commun., 2016, 52(66): 10109-10112.

    [34] [34] LU L, SERGAN V, BOS P J. Mechanism of electric-field-induced segregation of additives in a liquid-crystal host [J]. Phys. Rev. E, 2012, 86(5): 051706.

    [35] [35] HU X W, DE HAAN L T, KHANDELWAL H, et al. Cell thickness dependence of electrically tunable infrared reflectors based on polymer stabilized cholesteric liquid crystals [J]. Sci. China Mater., 2018, 61(5): 745-751.

    Tools

    Get Citation

    Copy Citation Text

    ZHANG Xin-min, LU Hong-bo, WANG Qi, WANG Cang-yu, XU Miao, ZHU Jun, QIU Long-zhen. Modulation of reflection band in polymer-stabilized cholesteric liquid crystals by changing DC electric field direction[J]. Chinese Journal of Liquid Crystals and Displays, 2021, 36(8): 1075

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Mar. 8, 2021

    Accepted: --

    Published Online: Sep. 4, 2021

    The Author Email: ZHANG Xin-min (1215064540@qq.com)

    DOI:10.37188/cjlcd.2021-0061

    Topics