Journal of Innovative Optical Health Sciences, Volume. 17, Issue 6, 2450012(2024)

Identification of pathological characteristics in pulmonary tuberculosis using polarization-sensitive optical coherence tomography

Yun Ding1,2, Zhuoqun Yuan3, Xiaojiang Zhao4, Guozheng Gao5, Xin Li4,6、*, and Yanmei Liang3、**
Author Affiliations
  • 1Clinical School of Thoracic, Tianjin Medical University, Tianjin, P. R. China
  • 2Department of Thoracic Surgery, Fujian Provincial Hospital, Fujian, P. R. China
  • 3Institute of Modern Optics, Nankai University, Tianjin Key Laboratory of Micro-scale Optical, Information Science and Technology, Tianjin 300350, P. R. China
  • 4School of Medicine, Tianjin University, Tianjin, P. R. China
  • 5Department of Pathology, Tianjin Chest Hospital, No. 261, Taierzhuang South Road Jinnan District, Tianjin 300222, P. R. China
  • 6Department of Thoracic Surgery, Tianjin Chest Hospital, Tianjin, P. R. China
  • show less
    References(27)

    [1] S. Bagcchi. WHO’s global tuberculosis report 2022. Lancet Microbe, 4, e20(2023).

    [2] S. Dorman. Advances in the diagnosis of tuberculosis: Current status and future prospects. Int. J. Tuberc. Lung Dis., 19, 504-516(2015).

    [3] T. Sodsri, R. P. Baughman, T. Sriprasart. Diagnosis of pulmonary sarcoidosis in tuberculosis endemic area: A narrative review. J. Thorac. Dis., 15, 5760-5772(2023).

    [4] N. N. Chegou, K. G. Hoek, M. Kriel, R. M. Warren, T. C. Victor, G. Walzl. Tuberculosis assays: Past, present and future. Expert Rev. Anti-Infect. Ther., 9, 457-469(2011).

    [5] R. Zheng, F. Xu, X. Huang, J. Wang, Y. Feng, J. Huang, L. Qin. Evaluation of aptamer fluorescence microscopy in the diagnosis of pulmonary tuberculosis. Microbiol. Spectr., 10, e0260221(2022).

    [6] D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto. Optical coherence tomography. Science, 254, 1178-1181(1991).

    [7] J. F. de Boer, S. M. Srinivas, B. H. Park. Polarization effects in optical coherence tomography of various biological tissues. IEEE J. Sel. Top Quantum Electron., 5, 1200-1204(1999).

    [8] W. Y. Oh, S. H. Yun, B. J. Vakoc, M. Shishkov, A. E. Desjardins, B. H. Park, J. F. de Boer, G. J. Tearney, B. E. Bouma. High-speed polarization sensitive optical frequency domain imaging with frequency multiplexing. Opt. Express, 16, 1096-1103(2008).

    [9] D. Yang, Z. Yuan, Z. Yang, M. Hu, Y. Liang. High-resolution polarization-sensitive optical coherence tomography and optical coherence tomography angiography for zebrafish skin imaging. J. Innov. Opt. Heal. Sci., 14, 2150022(2021).

    [10] K. Dheda, H. Booth, J. F. Huggett, M. A. Johnson, A. Zumla, G. A. W. Rook. Lung remodeling in pulmonary tuberculosis. J. Infect. Dis., 192, 1201-1209(2005).

    [11] M. S. Wilson, T. A. Wynn. Pulmonary fibrosis: Pathogenesis, etiology and regulation. Mucosal. Immunol., 2, 103-121(2009).

    [12] L. Song, D. Zhang, H. Wang, X. Xia, W. Huang, J. Gonzales, L. E. Via, D. Wang. Automated quantitative assay of fibrosis characteristics in tuberculosis granulomas. Front. Microbiol., 14, 1301141(2023).

    [13] J. M. Schmitt, S. H. Xiang. Cross-polarized backscatter in optical coherence tomography of biological tissue. Opt. Lett., 23, 1060-1062(1998).

    [14] A. Goorsenberg, K. A. Kalverda, J. Annema, P. Bonta. Advances in optical coherence tomography and confocal laser endomicroscopy in pulmonary diseases. Respiration, 99, 190-205(2020).

    [15] A. M. Pagnozzi, R. W. Kirk, B. F. Kennedy, D. D. Sampson, R. A. McLaughlin. Automated quantification of lung structures from optical coherence tomography images. Biomed. Opt. Express, 4, 2383-2395(2013).

    [16] L. P. Hariri, M. Mino-Kenudson, M. B. Applegate, E. J. Mark, G. J. Tearney, M. Lanuti, C. L. Channick, A. Chee, M. J. Suter. Toward the guidance of transbronchial biopsy: Identifying pulmonary nodules with optical coherence tomography. Chest, 144, 1261-1268(2013).

    [17] S. Nandy, T. L. Helland, B. W. Roop, R. A. Raphaely, A. Ly, M. Lew, S. R. Berigei, M. Villiger, A. Sorokina, M. V. Szabari, F. J. Fintelmann, M. J. Suter, L. P. Hariri. Rapid non-destructive volumetric tumor yield assessment in fresh lung core needle biopsies using polarization sensitive optical coherence tomography. Biomed. Opt. Express, 12, 5597-5613(2021).

    [18] Q. Zhu, H. Yu, Z. Liang, W. Zhao, M. Zhu, Y. Xu, M. Guo, Y. Jia, C. Zou, Z. Yang, L. Chen. Novel image features of optical coherence tomography for pathological classification of lung cancer: Results from a prospective clinical trial. Front. Oncol., 12, 870556(2022).

    [19] J. N. S. d’Hooghe, A. W. M. Goorsenberg, D. M. de Bruin, J. J. T. H. Roelofs, J. T. Annema, P. I. Bonta. Optical coherence tomography for identification and quantification of human airway wall layers. PLoS One, 12, e0184145(2017).

    [20] H.-C. Liu, M.-H. Lin, C.-H. Ting, Y.-M. Wang, C.-W. Sun. Intraoperative application of optical coherence tomography for lung tumor. J. Biophotonics, 16, e202200344(2023).

    [21] H.-C. Liu, M.-H. Lin, W.-C. Chang, R.-C. Zeng, Y.-M. Wang, C.-W. Sun. Rapid on-site AI-assisted grading for lung surgery based on optical coherence tomography. Cancers (Basel), 15, 5388(2023).

    [22] Z. Yang, J. Shang, C. Liu, J. Zhang, F. Hou, Y. Liang. Intraoperative imaging of oral-maxillofacial lesions using optical coherence tomography. J. Innov. Opt. Heal. Sci., 13, 2050010(2020).

    [23] Z. Yang, J. Shang, C. Liu, J. Zhang, Y. Liang. Identification of oral precancerous and cancerous tissue by swept source optical coherence tomography. Lasers Surg. Med., 54, 320-328(2022).

    [24] L. C. C. de Freitas, E. Phelan, L. Liu, J. Gardecki, E. Namati, W. C. Warger, G. J. Tearney, G. W. Randolph. Optical coherence tomography imaging during thyroid and parathyroid surgery: A novel system of tissue identification and differentiation to obviate tissue resection and frozen section. Head Neck, 36, 1329-1334(2014).

    [25] M. Hu, Z. Yuan, D. Yang, J. Zhao, Y. Liang. Deep learning-based inpainting of saturation artifacts in optical coherence tomography images. J. Innov. Opt. Heal. Sci., 17, 2350026(2024).

    [26] W. Gao, B. Li, S. Chen, Y. Shi, P. Lin, O. O. Myakinin, V. P. Zakharov. Detection of diabetic retinopathy in its early stages using textural features of optical coherence tomography angiography. J. Innov. Opt. Heal. Sci., 15, 2250006(2022).

    [27] T. M. Smith, M. A. Youngblom, J. F. Kernien, M. A. Mohamed, S. S. Fry, L. L. Bohr, T. D. Mortimer, M. B. O’Neill, C. S. Pepperell. Rapid adaptation of a complex trait during experimental evolution of Mycobacterium tuberculosis. Elife, 11, e78454(2022).

    Tools

    Get Citation

    Copy Citation Text

    Yun Ding, Zhuoqun Yuan, Xiaojiang Zhao, Guozheng Gao, Xin Li, Yanmei Liang. Identification of pathological characteristics in pulmonary tuberculosis using polarization-sensitive optical coherence tomography[J]. Journal of Innovative Optical Health Sciences, 2024, 17(6): 2450012

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Mar. 25, 2024

    Accepted: Jun. 2, 2024

    Published Online: Nov. 13, 2024

    The Author Email: Xin Li (cinlysmart@126.com), Yanmei Liang (ymliang@nankai.edu.cn)

    DOI:10.1142/S1793545824500123

    Topics