Chinese Journal of Lasers, Volume. 51, Issue 3, 0307303(2024)
Progress in Optical Trapping and Spectroscopic Measurements of Airborne Particles
[1] Facciolà A, Visalli G, Pruiti Ciarello M et al. Newly emerging airborne pollutants: current knowledge of health impact of micro and nanoplastics[J]. International Journal of Environmental Research and Public Health, 18, 2997-3013(2021).
[2] Molina C, Toro A R, Manzano C A et al. Airborne aerosols and human health: leapfrogging from mass concentration to oxidative potential[J]. Atmosphere, 11, 917(2020).
[3] Górny R L. Microbial aerosols: sources, properties, health effects, exposure assessment—a review[J]. KONA Powder and Particle Journal, 37, 64-84(2020).
[4] Bellouin N, Quaas J, Gryspeerdt E et al. Bounding global aerosol radiative forcing of climate change[J]. Reviews of Geophysics, 58, RG000660(2020).
[5] Ault A P, Axson J L. Atmospheric aerosol chemistry: spectroscopic and microscopic advances[J]. Analytical Chemistry, 89, 430-452(2017).
[6] Hinds W C[M]. Aerosol technology: properties, behavior, and measurement of airborne particles(1999).
[7] Li W J, Shao L Y, Zhang D Z et al. A review of single aerosol particle studies in the atmosphere of East Asia: morphology, mixing state, source, and heterogeneous reactions[J]. Journal of Cleaner Production, 112, 1330-1349(2016).
[8] Richards D S, Trobaugh K L, Hajek-Herrera J et al. Dual-balance electrodynamic trap as a microanalytical tool for identifying gel transitions and viscous properties of levitated aerosol particles[J]. Analytical Chemistry, 92, 3086-3094(2020).
[9] Price C L, Bain A, Wallace B J et al. Simultaneous retrieval of the size and refractive index of suspended droplets in a linear quadrupole electrodynamic balance[J]. The Journal of Physical Chemistry A, 124, 1811-1820(2020).
[10] Röthlisberger M, Schmidli G, Schuck M et al. Multi-frequency acoustic levitation and trapping of particles in all degrees of freedom[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 69, 1572-1575(2022).
[11] Ashkin A. Acceleration and trapping of particles by radiation pressure[J]. Physical Review Letters, 24, 156-159(1970).
[12] Mitchem L, Reid J P. Optical manipulation and characterisation of aerosol particles using a single-beam gradient force optical trap[J]. Chemical Society Reviews, 37, 756-769(2008).
[13] Gong Z Y, Pan Y L, Videen G et al. Optical trapping and manipulation of single particles in air: principles, technical details, and applications[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 214, 94-119(2018).
[14] Wang C J, Pan Y L, Videen G. Optical trapping and laser-spectroscopy measurements of single particles in air: a review[J]. Measurement Science and Technology, 32, 102005(2021).
[15] Alali H, Ai Y K, Pan Y L et al. A collection of molecular fingerprints of single aerosol particles in air for potential identification and detection using optical trapping-Raman spectroscopy[J]. Molecules, 27, 5966(2022).
[16] Maragò O M, Jones P H, Gucciardi P G et al. Optical trapping and manipulation of nanostructures[J]. Nature Nanotechnology, 8, 807-819(2013).
[17] Favre-Bulle I A, Stilgoe A B, Scott E K et al. Optical trapping in vivo: theory, practice, and applications[J]. Nanophotonics, 8, 1023-1040(2019).
[18] Kalume A, Wang C J, Pan Y L. Optical-trapping laser techniques for characterizing airborne aerosol particles and its application in chemical aerosol study[J]. Micromachines, 12, 466(2021).
[19] Pesce G, Jones P H, Maragò O M et al. Optical tweezers: theory and practice[J]. The European Physical Journal Plus, 135, 949(2020).
[20] Wang M D, Yin H, Landick R et al. Stretching DNA with optical tweezers[J]. Biophysical Journal, 72, 1335-1346(1997).
[21] Zhang H, Liu K K. Optical tweezers for single cells[J]. Journal of the Royal Society, Interface, 5, 671-690(2008).
[22] Zhong M C, Wei X B, Zhou J H et al. Trapping red blood cells in living animals using optical tweezers[J]. Nature Communications, 4, 1768(2013).
[23] Chen P, Dang Y T, Zhong H et al. Single-fiber optical tweezer based on coexistence of LP01 and LP11 modes for multiplexed capture and manipulation of biological cells[J]. Acta Optica Sinica, 43, 0406004(2023).
[24] Han X, Chen X L, Xiong W et al. Vaccum optical tweezers system and its research progress in precision measurement[J]. Chinese Journal of Lasers, 48, 0401011(2021).
[25] Ashkin A, Dziedzic J M. Optical levitation of liquid drops by radiation pressure[J]. Science, 187, 1073-1075(1975).
[26] Omori R, Kobayashi T, Suzuki A. Observation of a single-beam gradient-force optical trap for dielectric particles in air[J]. Optics Letters, 22, 816-818(1997).
[27] Hopkins R J, Mitchem L, Ward A D et al. Control and characterisation of a single aerosol droplet in a single-beam gradient-force optical trap[J]. Physical Chemistry Chemical Physics, 6, 4924-4927(2004).
[28] Summers M D, Reid J P, McGloin D. Optical guiding of aerosol droplets[J]. Optics Express, 14, 6373-6380(2006).
[29] Carruthers A E, Walker J S, Casey A et al. Selection and characterization of aerosol particle size using a Bessel beam optical trap for single particle analysis[J]. Physical Chemistry Chemical Physics, 14, 6741-6748(2012).
[30] Shvedov V G, Desyatnikov A S, Rode A V et al. Optical guiding of absorbing nanoclusters in air[J]. Optics Express, 17, 5743-5757(2009).
[31] Pan Y L, Hill S C, Coleman M. Photophoretic trapping of absorbing particles in air and measurement of their single-particle Raman spectra[J]. Optics Express, 20, 5325-5334(2012).
[32] Kalume A, Zhu E, Wang C J et al. Position-resolved Raman spectra from a laser-trapped single airborne chemical droplet[J]. Optics Letters, 42, 5113-5116(2017).
[33] Kalume A, Wang C J, Santarpia J et al. Liquid-liquid phase separation and evaporation of a laser-trapped organic-organic airborne droplet using temporal spatial-resolved Raman spectroscopy[J]. Physical Chemistry Chemical Physics, 20, 19151-19159(2018).
[34] Gong Z Y, Pan Y L, Videen G et al. Chemical reactions of single optically trapped bioaerosols in a controlled environment[J]. Aerosol Science and Technology, 53, 853-859(2019).
[35] Nichols E F, Hull G F. The pressure due to radiation[J]. Physical Review, 17, 26-50(1903).
[36] Maxwell J C[M]. A treatise on electricity and magnetism(2010).
[37] Roosen G, Imbert C. Optical levitation by means of two horizontal laser beams: a theoretical and experimental study[J]. Physics Letters A, 59, 6-8(1976).
[38] Roosen G. La lévitation optique de sphères[J]. Canadian Journal of Physics, 57, 1260-1279(1979).
[39] Ashkin A. Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime[J]. Biophysical Journal, 61, 569-582(1992).
[40] Bouloumis T D, Nic Chormaic S. From far-field to near-field micro- and nanoparticle optical trapping[J]. Applied Sciences, 10, 1375(2020).
[41] Svoboda K, Block S M. Optical trapping of metallic Rayleigh particles[J]. Optics Letters, 19, 930-932(1994).
[42] Ashkin A, Dziedzic J M, Bjorkholm J E et al. Observation of a single-beam gradient force optical trap for dielectric particles[J]. Optics Letters, 11, 288-290(1986).
[43] Neuman K C, Block S M. Optical trapping[J]. The Review of Scientific Instruments, 75, 2787-2809(2004).
[44] Barton J P, Alexander D R, Schaub S A. Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam[J]. Journal of Applied Physics, 66, 4594-4602(1989).
[45] Gouesbet G, Lock J A, Gréhan G. Generalized Lorenz-Mie theories and description of electromagnetic arbitrary shaped beams: localized approximations and localized beam models, a review[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 112, 1-27(2011).
[46] Nieminen T A, Loke V L Y, Stilgoe A B et al. Optical tweezers computational toolbox[J]. Journal of Optics A: Pure and Applied Optics, 9, S196-S203(2007).
[47] Gauthier R C. Computation of the optical trapping force using an FDTD based technique[J]. Optics Express, 13, 3707-3718(2005).
[48] Ehrenhaft F. On the physics of millionths of centimeters[J]. Physikalische Zeitschft, 18, 352-368(1917).
[49] Jovanovic O. Photophoresis—light induced motion of particles suspended in gas[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 110, 889-901(2009).
[50] Wang C J, Gong Z Y, Pan Y L et al. Laser pushing or pulling of absorbing airborne particles[J]. Applied Physics Letters, 109, 011905(2016).
[51] Horvath H. Photophoresis–a forgotten force?[J]. KONA Powder and Particle Journal, 31, 181-199(2014).
[52] Rohatschek H. Semi-empirical model of photophoretic forces for the entire range of pressures[J]. Journal of Aerosol Science, 26, 717-734(1995).
[53] Chen J, Huang Z X, Kuang D F. Optical manipulation of micro-particles with multi-axis asymmetric structured beam[J]. Chinese Journal of Lasers, 48, 2413001(2021).
[54] Zhang L, Cook K, Szmalenberg A et al. Dual beam optical fiber traps for aerosols with angular deviation[J]. Proceedings of SPIE, 12017, 120170G(2022).
[55] Sil S, Pahi A, Punse A A et al. Trapping multiple absorbing particles in air using an optical fiber by photophoretic forces[J]. Journal of Optics, 24, 074003(2022).
[56] Zhu X M, Li N, Yang J Y et al. Revolution of a trapped particle in counter-propagating dual-beam optical tweezers under low pressure[J]. Optics Express, 29, 11169-11180(2021).
[57] Taheri S M R, Sadeghi M, Madadi E et al. Tube length-assisted optimized aerosol trapping[J]. Optics Communications, 329, 196-199(2014).
[58] Summers M D, Burnham D R, McGloin D. Trapping solid aerosols with optical tweezers: a comparison between gas and liquid phase optical traps[J]. Optics Express, 16, 7739-7747(2008).
[59] Logozzo A, Preston T C. Temperature-controlled dual-beam optical trap for single particle studies of organic aerosol[J]. The Journal of Physical Chemistry A, 126, 109-118(2022).
[60] Thurn R, Kiefer W. Raman-microsampling technique applying optical levitation by radiation pressure[J]. Applied Spectroscopy, 38, 78-83(1984).
[61] Isomura A, Magome N, Kohira M I et al. Toward the stable optical trapping of a droplet with counter laser beams under microgravity[J]. Chemical Physics Letters, 429, 321-325(2006).
[62] Li T C, Kheifets S, Medellin D et al. Measurement of the instantaneous velocity of a Brownian particle[J]. Science, 328, 1673-1675(2010).
[63] Fukuyama Y, Yasuda N, Kimura S et al. Anomalous lattice shrink of a single CeO2 submicrometer particle in an optical trap[J]. Journal of the Physical Society of Japan, 82, 114608(2013).
[64] Rkiouak L, Tang M J, Camp J C J et al. Optical trapping and Raman spectroscopy of solid particles[J]. Physical Chemistry Chemical Physics, 16, 11426-11434(2014).
[65] Tang M J, Camp J C J, Rkiouak L et al. Heterogeneous interaction of SiO2 with N2O5: aerosol flow tube and single particle optical levitation–Raman spectroscopy studies[J]. The Journal of Physical Chemistry A, 118, 8817-8827(2014).
[66] Zhang Z, Cannan D, Liu J J et al. Observation of trapping and transporting air-borne absorbing particles with a single optical beam[J]. Optics Express, 20, 16212-16217(2012).
[67] Lin J D, Li Y Q. Optical trapping and rotation of airborne absorbing particles with a single focused laser beam[J]. Applied Physics Letters, 104, 101909(2014).
[68] Fortes F J, Fernández-Bravo A, Javier Laserna J. Chemical characterization of single micro- and nano-particles by optical catapulting-optical trapping-laser-induced breakdown spectroscopy[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 100, 78-85(2014).
[69] Chen G H, He L, Wu M Y et al. Optical trapping, pulling, and Raman spectroscopy of airborne absorbing particles based on negative photophoretic force[J]. Proceedings of SPIE, 10347, 103472A(2017).
[70] Huisken J, Stelzer E H K. Optical levitation of absorbing particles with a nominally Gaussian laser beam[J]. Optics Letters, 27, 1223-1225(2002).
[71] Ling L, Li Y Q. Measurement of Raman spectra of single airborne absorbing particles trapped by a single laser beam[J]. Optics Letters, 38, 416-418(2013).
[72] Niu C, Cheng X M, Zhang T L et al. Novel method based on hollow laser trapping-LIBS-machine learning for simultaneous quantitative analysis of multiple metal elements in a single microsized particle in air[J]. Analytical Chemistry, 93, 2281-2290(2021).
[73] Zhang W D, Cheng X M, Wang X et al. Three-dimensional optical manipulation of trapped light-absorbing particles based on a hollow beam[J]. Europhysics Letters, 138, 54001(2022).
[74] Redding B, Hill S C, Alexson D et al. Photophoretic trapping of airborne particles using ultraviolet illumination[J]. Optics Express, 23, 3630-3639(2015).
[75] Gong Z Y, Pan Y L, Wang C J. Optical configurations for photophoretic trap of single particles in air[J]. Review of Scientific Instruments, 87, 103104(2016).
[76] Gong Z Y, Pan Y L, Wang C J. Characterization of single airborne particle extinction using the tunable optical trap-cavity ringdown spectroscopy (OT-CRDS) in the UV[J]. Optics Express, 25, 6732-6745(2017).
[77] Alali H, Gong Z Y, Videen G et al. Laser spectroscopic characterization of single extraterrestrial dust particles using optical trapping-cavity ringdown and Raman spectroscopy[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 255, 107249(2020).
[78] Wang C J, Pan Y L, Hill S C et al. Photophoretic trapping-Raman spectroscopy for single pollens and fungal spores trapped in air[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 153, 4-12(2015).
[79] Ai Y K, Wang C J, Pan Y L et al. Characterization of single fungal aerosol particles in a reactive atmospheric environment using time-resolved optical trapping-Raman spectroscopy (OT-RS)[J]. Environmental Science: Atmospheres, 2, 591-600(2022).
[80] Ai Y K, Alali H, Pan Y L et al. Single-particle optical-trapping Raman spectroscopy for the detection and identification of aerosolized airborne biological particles[J]. Measurement Science and Technology, 32, 055207(2021).
[81] Kalume A, Beresnev L A, Santarpia J et al. Detection and characterization of chemical aerosol using laser-trapping single-particle Raman spectroscopy[J]. Applied Optics, 56, 6577-6582(2017).
[82] Kalume A, Wang C J, Santarpia J et al. Study of single airborne particle using laser-trapped submicron position-resolved temporal Raman spectroscopy[J]. Chemical Physics Letters, 706, 255-260(2018).
[83] Redding B, Pan Y L. Optical trap for both transparent and absorbing particles in air using a single shaped laser beam[J]. Optics Letters, 40, 2798-2801(2015).
[84] Gong Z Y, Pan Y L, Videen G et al. Optical trapping-Raman spectroscopy (OT-RS) with embedded microscopy imaging for concurrent characterization and monitoring of physical and chemical properties of single particles[J]. Analytica Chimica Acta, 1020, 86-94(2018).
[85] Pan Y L, Kalume A, Lenton I C D et al. Optical-trapping of particles in air using parabolic reflectors and a hollow laser beam[J]. Optics Express, 27, 33061-33069(2019).
[86] Wang C J, Gong Z Y, Pan Y L et al. Optical trap-cavity ringdown spectroscopy as a single-aerosol-particle-scope[J]. Applied Physics Letters, 107, 241903(2015).
[87] Jones S H, King M D, Ward A D. Atmospherically relevant core-shell aerosol studied using optical trapping and Mie scattering[J]. Chemical Communications, 51, 4914-4917(2015).
[88] Li S J, Huang X F. The manipulation and combustion of carbon-based micro particles by optical tweezers[J]. International Journal of Optomechatronics, 9, 35-47(2015).
[89] Ghimire C, Koirala D, Mathis M B et al. Controlled particle collision leads to direct observation of docking and fusion of lipid droplets in an optical trap[J]. Langmuir, 30, 1370-1375(2014).
[90] Shvedov V G, Rode A V, Izdebskaya Y V et al. Giant optical manipulation[J]. Physical Review Letters, 105, 118103(2010).
[91] Liu F R, Zhang Z G, Wei Y F et al. Photophoretic trapping of multiple particles in tapered-ring optical field[J]. Optics Express, 22, 23716-23723(2014).
[92] Liu F R, Zhang Z G, Fu S H et al. Manipulation of aerosols revolving in taper-ring optical traps[J]. Optics Letters, 39, 100-103(2014).
[93] Roosen G, Imbert C. The TEM01 mode laser beam—a powerful tool for optical levitation of various types of spheres[J]. Optics Communications, 26, 432-436(1978).
[94] Shvedov V G, Hnatovsky C, Rode A V et al. Robust trapping and manipulation of airborne particles with a bottle beam[J]. Optics Express, 19, 17350-17356(2011).
[95] Zhang P, Zhang Z, Prakash J et al. Trapping and transporting aerosols with a single optical bottle beam generated by moiré techniques[J]. Optics Letters, 36, 1491-1493(2011).
[96] Lankers M, Popp J, Urlaub E et al. Investigations of multiple component systems by means of optical trapping and Raman spectroscopy[J]. Journal of Molecular Structure, 348, 265-268(1995).
[97] Thurn R, Kiefer W. Structural resonances observed in the Raman spectra of optically levitated liquid droplets[J]. Applied Optics, 24, 1515-1519(1985).
[98] Esen C, Kaiser T, Schweiger G. Raman investigation of photopolymerization reactions of single optically levitated microparticles[J]. Applied Spectroscopy, 50, 823-828(1996).
[99] King M D, Thompson K C, Ward A D. Laser tweezers Raman study of optically trapped aerosol droplets of seawater and oleic acid reacting with ozone: implications for cloud-droplet properties[J]. Journal of the American Chemical Society, 126, 16710-16711(2004).
[100] Miles R E H, Walker J S, Burnham D R et al. Retrieval of the complex refractive index of aerosol droplets from optical tweezers measurements[J]. Physical Chemistry Chemical Physics, 14, 3037-3047(2012).
[101] Shepherd R H, King M D, Marks A A et al. Determination of the refractive index of insoluble organic extracts from atmospheric aerosol over the visible wavelength range using optical tweezers[J]. Atmospheric Chemistry and Physics, 18, 5235-5252(2018).
[102] Cai C, Stewart D J, Reid J P et al. Organic component vapor pressures and hygroscopicities of aqueous aerosol measured by optical tweezers[J]. The Journal of Physical Chemistry A, 119, 704-718(2015).
[103] Rafferty A, Gorkowski K, Zuend A et al. Optical deformation of single aerosol particles[J]. Proceedings of the National Academy of Sciences of the United States of America, 116, 19880-19886(2019).
[104] Davidson N, Tong H J, Kalberer M et al. Measurement of the Raman spectra and hygroscopicity of four pharmaceutical aerosols as they travel from pressurised metered dose inhalers (pMDI) to a model lung[J]. International Journal of Pharmaceutics, 520, 59-69(2017).
[105] Gao X Y, Cai C, Ma J B et al. Repartitioning of glycerol between levitated and surrounding deposited glycerol/NaNO3/H2O droplets[J]. Royal Society Open Science, 5, 170819(2018).
[106] Lü X J, Wang Y, Cai C et al. Investigation of gel formation and volatilization of acetate acid in magnesium acetate droplets by the optical tweezers[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 200, 179-185(2018).
[107] Lü X J, Zhang Y H. Volatility of ammonium nitrate in ultra-viscous aerosol droplets by optical tweezers[J]. Acta Chimica Sinica, 78, 326-329(2020).
[108] Lü X J, Chen Z, Ma J B et al. Evaporation of mixed citric acid/(NH4)2SO4/H2O particles: volatility of organic aerosol by using optical tweezers[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 226, 117552(2020).
[109] Chang P P, Gao X Y, Cai C et al. Effect of waiting time on the water transport kinetics of magnesium sulfate aerosol at gel-forming relative humidity using optical tweezers[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 228, 117727(2020).
[110] Cotterell M I, Mason B J, Carruthers A E et al. Measurements of the evaporation and hygroscopic response of single fine-mode aerosol particles using a Bessel beam optical trap[J]. Physical Chemistry Chemical Physics, 16, 2118-2128(2014).
[111] Hallquist M, Wenger J C, Baltensperger U et al. The formation, properties and impact of secondary organic aerosol: current and emerging issues[J]. Atmospheric Chemistry and Physics, 9, 5155-5236(2009).
[112] Prather K A, Hatch C D, Grassian V H. Analysis of atmospheric aerosols[J]. Annual Review of Analytical Chemistry, 1, 485-514(2008).
[113] Jacobson M Z. Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols[J]. Nature, 409, 695-697(2001).
[114] Gorkowski K, Beydoun H, Aboff M et al. Advanced aerosol optical tweezers chamber design to facilitate phase-separation and equilibration timescale experiments on complex droplets[J]. Aerosol Science and Technology, 50, 1327-1341(2016).
[115] Gorkowski K, Donahue N M, Sullivan R C. Emerging investigator series: determination of biphasic core-shell droplet properties using aerosol optical tweezers[J]. Environmental Science: Processes & Impacts, 20, 1512-1523(2018).
[116] Gorkowski K, Donahue N M, Sullivan R C. Emulsified and liquid-liquid phase-separated states of α-pinene secondary organic aerosol determined using aerosol optical tweezers[J]. Environmental Science & Technology, 51, 12154-12163(2017).
[117] Gorkowski K, Donahue N M, Sullivan R C. Aerosol optical tweezers constrain the morphology evolution of liquid-liquid phase-separated atmospheric particles[J]. Chem, 6, 204-220(2020).
[118] Haddrell A E, Miles R E H, Bzdek B R et al. Coalescence sampling and analysis of aerosols using aerosol optical tweezers[J]. Analytical Chemistry, 89, 2345-2352(2017).
[119] Ishizaka S, Yamauchi K, Kitamura N. In situ quantification of ammonium sulfate in single aerosol droplets by means of laser trapping and Raman spectroscopy[J]. Analytical Sciences, 29, 1223-1226(2013).
[120] Ishizaka S, Ma J, Fujiwara T et al. Near-infrared laser-induced temperature elevation in optically-trapped aqueous droplets in air[J]. Analytical Sciences, 32, 425-430(2016).
[121] David G, Parmentier E A, Taurino I et al. Tracing the composition of single e-cigarette aerosol droplets in situ by laser-trapping and Raman scattering[J]. Scientific Reports, 10, 7929(2020).
[122] Davies J F, Wilson K R. Raman spectroscopy of isotopic water diffusion in ultraviscous, glassy, and gel states in aerosol by use of optical tweezers[J]. Analytical Chemistry, 88, 2361-2366(2016).
[123] Hunt O R, Ward A D, King M D. Laser heating of sulfuric acid droplets held in air by laser Raman tweezers[J]. RSC Advances, 3, 19448-19454(2013).
[124] Nakajima R, Miura A, Abe S et al. Optical trapping-polarized Raman microspectroscopy of single ethanol aerosol microdroplets: droplet size effects on rotational relaxation time and viscosity[J]. Analytical Chemistry, 93, 5218-5224(2021).
[125] Miura A, Nakajima R, Abe S et al. Optical trapping-microspectroscopy of single aerosol microdroplets in air: supercooling of dimethylsulfoxide microdroplets[J]. The Journal of Physical Chemistry A, 124, 9035-9043(2020).
[126] Boyer H C, Gorkowski K, Sullivan R C. In situ pH measurements of individual levitated microdroplets using aerosol optical tweezers[J]. Analytical Chemistry, 92, 1089-1096(2020).
[127] Gong Z Y, Pan Y L, Videen G et al. The temporal evolution process from fluorescence bleaching to clean Raman spectra of single solid particles optically trapped in air[J]. Chemical Physics Letters, 689, 100-104(2017).
[128] Gallimore P J, Davidson N M, Kalberer M et al. 1064 nm dispersive Raman microspectroscopy and optical trapping of pharmaceutical aerosols[J]. Analytical Chemistry, 90, 8838-8844(2018).
[129] Gong Z Y, Pan Y L, Videen G et al. Online characterization of single airborne carbon nanotube particles using optical trapping Raman spectroscopy[J]. Applied Spectroscopy, 73, 910-916(2019).
[130] King M D, Thompson K C, Ward A D et al. Oxidation of biogenic and water-soluble compounds in aqueous and organic aerosol droplets by ozone: a kinetic and product analysis approach using laser Raman tweezers[J]. Faraday Discussions, 137, 173-192(2008).
[131] Athanasiadis A, Fitzgerald C, Davidson N M et al. Dynamic viscosity mapping of the oxidation of squalene aerosol particles[J]. Physical Chemistry Chemical Physics, 18, 30385-30393(2016).
[132] Chang Y P, Wu S J, Lin M S et al. Ionic-strength and pH dependent reactivities of ascorbic acid toward ozone in aqueous micro-droplets studied using aerosol optical tweezers[J]. Physical Chemistry Chemical Physics, 23, 10108-10117(2021).
[133] Gómez Castaño J A, Boussekey L, Verwaerde J P et al. Enhancing double-beam laser tweezers Raman spectroscopy (LTRS) for the photochemical study of individual airborne microdroplets[J]. Molecules, 24, 3325(2019).
[134] Parmentier E A, David G, Arroyo P C et al. Photochemistry of single optically trapped oleic acid droplets[J]. Journal of Aerosol Science, 151, 105660(2021).
[135] Davies G, Driver J, Ward A et al. Operando studies of aerosol-assisted sol-gel catalyst synthesis via combined optical trapping and Raman spectroscopy[J]. The Journal of Physical Chemistry C, 125, 22591-22602(2021).
[136] Walker J S, Carruthers A E, Orr-Ewing A J et al. Measurements of light extinction by single aerosol particles[J]. The Journal of Physical Chemistry Letters, 4, 1748-1752(2013).
[137] Mason B J, Cotterell M I, Preston T C et al. Direct measurements of the optical cross sections and refractive indices of individual volatile and hygroscopic aerosol particles[J]. The Journal of Physical Chemistry A, 119, 5701-5713(2015).
[138] Cotterell M I, Mason B J, Preston T C et al. Optical extinction efficiency measurements on fine and accumulation mode aerosol using single particle cavity ring-down spectroscopy[J]. Physical Chemistry Chemical Physics, 17, 15843-15856(2015).
[139] Cotterell M I, Preston T C, Orr-Ewing A J et al. Assessing the accuracy of complex refractive index retrievals from single aerosol particle cavity ring-down spectroscopy[J]. Aerosol Science and Technology, 50, 1077-1095(2016).
[140] Cotterell M I, Willoughby R E, Bzdek B R et al. A complete parameterisation of the relative humidity and wavelength dependence of the refractive index of hygroscopic inorganic aerosol particles[J]. Atmospheric Chemistry and Physics, 17, 9837-9851(2017).
[141] Purohit P, Fortes F J, Laserna J J. Spectral identification in the attogram regime through laser-induced emission of single optically trapped nanoparticles in air[J]. Angewandte Chemie International Edition, 56, 14178-14182(2017).
[142] Purohit P, Fortes F J, Laserna J J. Subfemtogram simultaneous elemental detection in multicomponent nanomatrices using laser-induced plasma emission spectroscopy within atmospheric pressure optical traps[J]. Analytical Chemistry, 91, 7444-7449(2019).
[143] Purohit P, Fortes F J, Laserna J J. Optical trapping as a morphologically selective tool for in situ LIBS elemental characterization of single nanoparticles generated by laser ablation of bulk targets in air[J]. Analytical Chemistry, 93, 2635-2643(2021).
[144] Park H, LeBrun T W. Contact electrification of individual dielectric microparticles measured by optical tweezers in air[J]. ACS Applied Materials & Interfaces, 8, 34904-34913(2016).
[145] Carlse G, Borsos K B, Beica H C et al. Technique for rapid mass determination of airborne microparticles based on release and recapture from an optical dipole force trap[J]. Physical Review Applied, 14, 024017(2020).
[146] Li W Q, Li N, Shen Y et al. Dynamic analysis and rotation experiment of an optical-trapped microsphere in air[J]. Applied Optics, 57, 823-828(2018).
[147] Schneider V, Kersten H. An optical trapping system for particle probes in plasma diagnostics[J]. Review of Scientific Instruments, 89, 103505(2018).
[148] Rong S, Liu H S, Zhong Y et al. Enhancement of Raman spectra based on optical trapping of gold nanocubes[J]. Acta Optica Sinica, 41, 1730003(2021).
[149] He B, Cheng X M, Zhan Y J et al. Investigation on the laser trapping mechanism of light-absorbing particles in air[J]. EPL (Europhysics Letters), 126, 64002(2019).
[150] Guillon M, Stout B. Optical trapping and binding in air: imaging and spectroscopic analysis[J]. Physical Review A, 77, 023806(2008).
[151] Porfirev A P, Skidanov R V. Dark-hollow optical beams with a controllable shape for optical trapping in air[J]. Optics Express, 23, 8373-8382(2015).
[152] Horstmann M, Probst K, Fallnich C. An integrated fiber-based optical trap for single airborne particles[J]. Applied Physics B, 103, 35-39(2011).
[153] Power R, Reid J P, Anand S et al. Observation of the binary coalescence and equilibration of micrometer-sized droplets of aqueous aerosol in a single-beam gradient-force optical trap[J]. The Journal of Physical Chemistry A, 116, 8873-8884(2012).
[154] Jauffred L, Taheri S M R, Schmitt R et al. Optical trapping of gold nanoparticles in air[J]. Nano Letters, 15, 4713-4719(2015).
[155] Jiang M A, Ishizaka S, Fujiwara T et al. A laser trapping-spectroscopy study on mass transfer processes across a single micro-droplet/air interface[J]. Procedia Engineering, 102, 1212-1217(2015).
[156] Pan Y L, Wang C J, Hill S C et al. Trapping of individual airborne absorbing particles using a counterflow nozzle and photophoretic trap for continuous sampling and analysis[J]. Applied Physics Letters, 104, 113507(2014).
[157] Xiao G Z, Kuang T F, Xiong W et al. A PZT-assisted single particle loading method for dual-fiber optical trap in air[J]. Optics & Laser Technology, 126, 106115(2020).
[158] Fukuyama Y, Yasuda N, Sugimoto K et al. X-ray diffraction measurement of a single nanometre-sized particle levitated in air by an optical-trap sample holder[J]. Journal of Synchrotron Radiation, 27, 67-74(2020).
Get Citation
Copy Citation Text
Hang Zhong, Jun Chen, Jun Chen, Junsheng Liao. Progress in Optical Trapping and Spectroscopic Measurements of Airborne Particles[J]. Chinese Journal of Lasers, 2024, 51(3): 0307303
Category: Neurophotonics and Optical Regulation
Received: Jun. 13, 2023
Accepted: Jul. 14, 2023
Published Online: Feb. 19, 2024
The Author Email: Chen Jun (junchen76@163.com), Liao Junsheng (jshliao711@126.com)
CSTR:32183.14.CJL230911